
Micropak 75XL User Manual i

Micropak 75XL

An advanced simulator based development tool for

NEC 75XL microcontrollers

User manual

Document reference: Micropak 75XL User manual v1.2 Dec 1997

ii Micropak 75XL User Manual

Micropak 75XL User Manual iii

Copyright

Copyright 1996 AND Software Ltd., All rights reserved. No part of this
publication may be reproduced, transmitted, stored in a retrieval system,
or translated into any language or computer language, in any form or by
any means, electronic, mechanical, optical, chemical, manual or
otherwise, without the prior written permission of AND Software Ltd., 4
Forest Drive, Theydon Bois, Epping, Essex CM16 7EY, England.

Disclaimer

AND Software Ltd. makes no representations or warranties with respect to
the contents hereof and specifically disclaims any implied warranties of
merchantibility or fitness for any particular purpose. Further, AND
Software Ltd. reserves the right to make changes from time to time in the
content hereof without obligation of AND Software Ltd. to notify any
person of such revision or changes.

Accuracy

AND Software Ltd. cannot guarantee the accuracy or functionality of the
simulator under any particular circumstance. Neither AND Software Ltd.
nor any of its agents shall be liable in any way for any losses incurred
wholly or partly as a consequence of any errors, omissions or assumptions
made in or by the simulator or its associated documentation.

AND SOFTWARE LTD
4, Forest Drive
Theydon Bois
Essex
CM16 7EY
England

Tel: +44 (1992) 814655
Fax: +44 (1992) 813362

iv Micropak 75XL User Manual

Micropak 75XL User Manual v

Contents

PREFACE X

About this guide x

INTRODUCTION 1

The 75XL microcontroller family 1
Micropak 75XL - An overview 1
75XL devices supported by Micropak 75XL 3

INSTALLATION 5

The important files 5
Suggested directory structure 6
Running the SETUP utility 7
Run time links to the 75X tool chain 7

FAST STARTUP GUIDE 9

Starting the Micropak 75XL simulator 9
Setting up and debugging a new project 9
Opening an existing project 10
Common debugging features explained 11

TUTORIAL 15

The example application - stepper motor control 15
Setting up the test environment 16
Loading the example firmware 25
Understanding the example 26
Executing the code - The PC indicator and cursor 31
Simulating button presses 33
Test context files 34
Using the script file 35
Checking the generated sequence 36
Tracking down the bug 36
Making corrections 38
Moving on 39

vi Micropak 75XL User Manual

USER INTERFACE DETAILS 41

The Micropak 75XL screen 41
Window elements 43
Menu operation 45
Menu function reference descriptions 46
Using dialog boxes 52
The tool bar 54
Using the on-line help system 55

NAVIGATING PROJECT FILES 57

Project file overview 57
Opening a project 59
Editing a project 60
Specify Project Options 61

USING THE EDITOR 65

Opening files 65
Syntax colouring 67
Mouse driven functions when editing 67
Editor options 68
Keyboard functions when editing 70
Locating and changing text 71
The implications of editing 73
Re-building the project 74

CONTROLLING EXECUTION 75

Overview 75
Execution possibilities 76
Resetting and viewing the processor clock 78
The program counter 78
The timing window 79
Debug options 79

TRACE BUFFERING 81

Controlling Tracing 81
Trace buffer displays 82
Restarting execution 83
Inactive trace buffer 83

Micropak 75XL User Manual vii

BREAKPOINTS 85

Setting breakpoints 85
Types of breakpoints 88
Expression breakpoints 89
The ‘Counter’ field 90
The ‘Relation’ field 90
Breakpoint example 91
Viewing current breakpoints set ups 91
Setting breakpoints in the listing window 91
Removing breakpoints 92
Enabling/disabling breakpoints 92
Script file facilities 93

PORT SIMULATION TECHNIQUES 95

Overview 95
Using script files to control port conditions 97
Using script files to check port conditions 98
Pin numbering 98
Pull-up control and mask options 99

VIEWING SIMULATED OBJECTS 101

Overview 101
Displaying RAM 101
Signal recording windows 103
On-chip peripherals 108
Port views 109
Test panel displays 110

SOURCE DEBUGGING 115

Overview 115
NAME pseudo mnemonic 116
Source Windows 116
QuickWatch 117
Watch 118
Registers 121

USING SCRIPT FILES 123

Overview 123

viii Micropak 75XL User Manual

Script files - Purpose and uses 123
The script language 125
Script file variables 127
Script operators and expressions 128
Script file execution and control flow 130
Identities in script files 134
Script keywords 136
Script file commands and functions 139
ABS 139
ACOS 139
AND 140
ASIN 140
ATAN 141
BREAKPOINT 141
CLOSE 144
CONNECT 144
COS 145
EDIT 145
END 146
EQV 146
EVENT 147
EXP 148
FOR - TO - [STEP] 148
GETEDIT($) 149
GETFX 149
GETFXT 150
GETPC 150
GETTIME 150
GETV 151
GO 151
GOSUB 151
GOTO 152
IF - THEN - [ELSEIF] - [ELSE] - ENDIF 152
IMP 153
INPUT 153
LET 154
NOT 154
OPEN 155

Micropak 75XL User Manual ix

OR 156
PEEK 156
PRINT 157
POKE 157
REM 158
REPEAT - UNTIL 159
RETURN 159
SETEDIT 160
SETFLAG 160
SETPC 161
SETR 161
SETV 162
SIN 162
SGN 162
SQR 163
STOP 163
TAN 164
TIMEOUT 164
XOR 165

KEYBOARD SUMMARY 167

Editing keys 167
Accelerator keys 167

APPENDIX A - SCRIPT FILE GRAMMAR 171

Definition 171

APPENDIX B - SCRIPT FILE EXAMPLE 175

INDEX 183

Micropak 75XL User Manual x

Preface

About this guide

This guide explains how to use the Micropak 75XL simulator based
development tool.

The first section, Introduction, provides a rapid overview of the product
and its intended uses.

The next section, Installation, explains the steps required to install
Micropak 75XL onto your system.

The Fast Startup Guide provides concise instructions on using the
simulator for creating and debugging projects. This should be used to
gain an overview in using and controlling the tool.

The Tutorial section takes you through, step by step, a sample debugging
session and includes illustrations of some of the various ways the product
can be used and the facilities it offers.

User Interface Details is a wide ranging section, covering the elements of
the Micropak 75XL screen display, the operation of the menu system, the
tool bar and the other possibilities for controlling the simulation. This
section also describes the operation of the on-line help facility.

The next sections explain the fundamental facilities in more detail and
include Navigating and Editing Project Files, Controlling Execution,
Trace Buffering and Breakpoints.

The Port Simulation section gives important details of the approach
adopted for the simulation of port lines and discusses ways in which these
can be used to establish and test the interactions of the target firmware
under test with external hardware.

Micropak 75XL enables the states of multiple aspects of the simulation to
be viewed and monitored, many whilst the simulated code is executing.
These facilities are explained in the Viewing Simulated Objects section of
the user guide.

xi Micropak 75XL User Manual

The final section, Using Script Files, describes in detail the usage, scope
and flexibility of the in-built script file processor, which can significantly
increase the power of the test environment whilst also improving testing
productivity. It is recommended that this section is studied carefully
before planning a detailed testing or development programme, especially
where repetitive or regression testing is intended.

Appendices

There are two appendices.

The first contains a definition of the script file grammar.

The second appendix contains the script file example used in the
tutorial. This illustrates how the script file mechanism can be used to
extend the simulation to mimic the behaviour of external hardware.

Introduction The 75XL microcontroller family

Micropak 75XL User Manual 1

Introduction

The 75XL microcontroller family

The 75XL family of devices are tailor-made for very specific, high-volume
applications and offer an extremely attractive cost-performance ratio.

The family includes a variety of devices with differing on-chip peripheral
sets intended for differing application areas. All the devices feature a 4 bit
wide data RAM and an 8 bit wide program ROM area.

Micropak 75XL - An overview

The ‘simulation engine’

Micropak 75XL is an advanced simulator based tool for developing and
testing applications for the NEC 75XL family of microcontrollers.

The simulation includes the full CPU core and registers, on-chip
peripherals and I/O ports, and is performed totally in software in the host
PC - no external hardware is required.

Application code to be investigated can be loaded into the software
simulation and run, just as in hardware based environments.

Execution time assessments

The effective speed of the test code execution will vary with the speed of
the host PC and with other factors such as the detailed composition of the
target program. However, although the simulation does not therefore
execute in real time, the execution time for each individual instruction is
calculated and totalled by the simulation engine, so that detailed
time-critical code sections can be assessed and detailed execution time
measurements can be made.

Introduction

2 Micropak 75XL User Manual

Port simulation

The simulation allows an external ‘Thevenin’ equivalent network,
consisting of a single external voltage generator and a single external
series resistance, to be connected to each port line,. Both the voltage and
series resistance can be controlled via the user interface or the script file.
Extending the simulation in this way allows you to investigate the
interaction of the firmware under test with external hardware components
such as switches, LEDs, etc. It also allows checks on the drive capabilities
of the ports, and the use of pull-ups and so on.

Using Micropak 75XL in conjunction with OTP devices

Interactions with complex hardware peripherals are difficult to emulate
with the simulation alone, and in these situations one-time programmable
devices may offer a realistic low-cost development route. In these cases
the structure and basic behaviour of the code under scrutiny can be
developed in the simulated environment, ready for subsequent trials in
one-time programmable devices to confirm the correct operation of these
more complex interactions.

The user interface

The user interface of the product adheres to the accepted conventions for
Microsoft Windows applications, reducing to a minimum the overhead
associated with learning to control the facilities provided. Extensive use is
made of the graphical capabilities of the interface to provide a clear and
attractive display. The ability to make significant events in the target
system visible is considered to be a strong feature of the product and can
boost debugging productivity considerably.

An inbuilt editor is included to support program development during
debugging, with automatic links to the 75X tool chain to trigger and
control re-assembly.

The program is intended to interact with the 75X assembler, structured
assembler, macro-processor and linker. It includes facilities which allow
the execution of the program to be monitored at assembler source level.

Introduction 75XL devices supported by Micropak 75XL

Micropak 75XL User Manual 3

The script file processor

The product includes a powerful ‘script’ file processor which can monitor
and control events in the simulated target system according to control
‘programs’ written in the script language. Script files use a ‘BASIC-like’
syntax and can be used to mimic the behaviour of external devices or to set
up, run and check the results of repetitive or regression tests.

Using Micropak 75XL in quality and other formal testing
regimes

In addition to its development facilities, the simulator can also be used for
formal qualification or other quality testing. Powerful batch testing
facilities are included, simplifying the execution and documentation of
regression testing after product firmware changes.

75XL devices supported by Micropak 75XL

For a list of the 75XL family members currently supported by the
Micropak 75XL simulator, please see the README file on the
distribution diskettes or contact your NEC representative. A list of
supported devices is also given in the on-line help provided for the
product.

Introduction

4 Micropak 75XL User Manual

Installation The important files

Micropak 75XL User Manual 5

Installation

This chapter explains the steps required to install the Micropak 75XL
software, both in terms of running the SETUP facility provided on the
distribution diskette(s) and creating a suitable directory structure for your
project files.

The important files

The following files are supplied on the distribution diskette(s):

• MP75XL.EXE the main executable file

• MP75XL.HLP the help file for the Micropak 75XL
program

• CPYOUTPT.* pipe tool program files used to pipe output
between items in the tool chain

• README.TXT this describes installation instructions and
the devices currently supported

• Tutorial files for running the tutorial detailed in this user
manual

Note that you will also need the 75X assembler, or an equivalent, in order
to generate object code to run and test. Throughout this user manual it is
assumed you will be using the 75X assembler.

Suggested directory structure Installation

6 Micropak 75XL User Manual

Suggested directory structure

The suggested directory structure groups all the Micropak 75XL related
files under a main MP75XL sub-directory but splits the Micropak 75XL
executable and help files from the source code and other project specific
files.

Although other directory structures are possible, care must be taken to
ensure that the run-time links to the pre-processors, linker and assembler
from Micropak 75XL will operate correctly. The mechanisms used, and a
summary of the links which must be preserved, are described later in this
chapter under the heading ‘Run time links to the 75X tool chain’.

The following default directory structure is used by Micropak 75XL:

.

The BIN sub-directory contains all the executable files, with the exception
of the build tool executables. Note that the tutorial files are not required
for the normal operation of Micropak 75XL.

0 DRIVE :\

0 MP75XL\

0 BIN\

0 TUTORIAL\

0 PROJNAM1\

0 PROJNAM2\

Installation Running the SETUP utility

Micropak 75XL User Manual 7

Project specific directories

The sub-directories such as PROJNAM1 and PROJNAM2 are intended to
hold project specific files, including the source files and the project batch
file, which is used by the project re-building function to make the project.
It is recommended that these sub-directories are given meaningful names
to reflect the projects they represent, such as METER or TIMER, etc.

Running the SETUP utility

The distribution diskette contains a ‘SETUP.EXE’ installation program
which is used to create an appropriate directory structure on the working
drive and copy all the necessary files from the distribution diskette into the
new directory structure.

The SETUP program must be run from within Microsoft Windows.

Run time links to the 75X tool chain

Micropak 75XL includes facilities for re-building and building complete
executable code from the source using the standard components of the
NEC 75X tool chain. These components are not installed as part of the
Micropak 75XL set-up and must be installed separately. Locate the tools
in an appropriate directory (e.g. ‘NEC’) and edit the ‘Autoexec.bat’ file to
add this directory to the ‘path’ entry.

Suggested directory structure Installation

8 Micropak 75XL User Manual

Fast Startup Guide Starting the Micropak 75XL simulator

Micropak 75XL User Manual 9

Fast Startup Guide

This section gives an overview of the major facilities of the Micropak
75XL simulator to enable the user to begin working with the tool.

Starting the Micropak 75XL simulator

To start the Micropak 75XL simulator locate the ‘Micropak 75XL’ group
window and double-click the ‘Micropak’ program icon contained within
it:

 Setting up and debugging a new project

The Micropak 75XL simulator provides a complete environment for
writing, editing, assembling and testing your program. The environment
for this is called the ‘Project’ and therefore the first step is to create a new
‘Project’ using the following steps:

• Create an appropriate directory for the project, either using
‘File Manager’ or the DOS ‘md’ command.

• Create a new project file by selecting ‘New’ from the ‘Project’
menu.

• In the ‘New Project’ dialog box, type the path and name of the
project batch file (or click the ‘Browse’ button, locate the
project directory and specify the name of the batch file). Note
that the batch file must have the same name as the project
directory and a ‘.bat’ extension. Select the processor type
from the list.

Opening an existing project Fast Startup Guide

10 Micropak 75XL User Manual

• Create the assembler source files by selecting ‘New’ from the
‘File’ menu. Save the source files by selecting ‘Save As’ from
the ‘File’ menu. Assembler source files can subsequently be
edited by selecting ‘Open’ from the ‘File’ menu.

• Invoke assembly of the source modules to create a runnable
program by selecting ‘Rebuild All’ from the ‘Project’ menu.

• Create a test environment for the project including RAM
displays, peripheral and port views, signal traces, setting
breakpoints and building customised test panels, as desired.

• Debug the software using the various ‘Debug’ options
including fast and slow run modes, setting the PC at a ROM
address, tracing, etc.

Opening an existing project

Once a project has been created the project environment can be re-invoked
at subsequent debugging sessions without the need to re-define it. The
following steps should be used to open an existing project:

• Select ‘Open’ from the ‘Project’ menu.

• Continue with debugging the code, editing and re-building as
necessary.

Fast Startup Guide Common debugging features explained

Micropak 75XL User Manual 11

Common debugging features explained

How to set a breakpoint

Breakpoints can be set on program locations, memory read/writes and
peripheral read/writes. Breakpoints are set by selecting ‘Breakpoints’
from the ‘Debug’ menu. There is also a toolbar icon for setting or
clearing a breakpoint at the current cursor position.

How to start/stop execution

A set of execution control facilities are available from the ‘Debug’ menu.
Execution starts from the current program counter position. The ‘Reset’
option, also available from the ‘Debug’ menu, resets the simulated
processor or may be positioned anywhere in the code. Execution will
terminate according to the option selected, e.g. at the current cursor
position, or at the next instruction, or whenever a breakpoint is reached.
A specific ‘stop’ instruction is also provided. All these facilities are
available from the ‘Debug’ menu and as a collection of toolbar icons.

The time duration of an execution can be monitored using the ‘Timing’
window, which is displayed by selecting ‘Timing’ from the ‘Window’
menu.

How to edit source programs

Any text file may be created and edited using the options available from
the ‘File’ and ‘Edit’ menus. Syntax colouring of source programs can be
applied if required so that, for example, labels and instructions are
displayed in different colours. All normal editing functions are available,
including ‘Cut’, ‘Copy’, ‘Paste’, ‘Undo’ and ‘Find’.

How to navigate files

The ‘View’ menu option provides a number of facilities to help traverse
active files, including jumping to a given line number. Bookmarks can be
set in a file allowing the user to rapidly move to pre-defined points within
their source files.

Common debugging features explained Fast Startup Guide

12 Micropak 75XL User Manual

How to view data items

A ‘Data’ window can be displayed in order to view specified areas of
RAM by selecting ‘Device’ from the ‘Window’ menu. Information about
specific data items can be viewed temporarily using the ‘QuickWatch’
facility or monitored continuously using the ‘Watch’ facility. Any data
item in the ‘QuickWatch’ window can be subsequently moved to the
‘Watch’ window by selecting ‘Add to Watch’ from the ‘QuickWatch’.

How to display peripherals and ports

The simulation of device peripherals and ports can be viewed by selecting
the ‘Device’ from the ‘Window’ menu then choosing from the displayed
list. One window will be displayed for each item selected.

Ports can also be displayed in signal windows. In this instance the port
values will be shown as a ‘scope-like’ display. This facility can be
selected by choosing ‘New Signals’ from the ‘Trace’ menu.

How to build customised displays

Customised displays are built as test panels, where each panel can contain
one or more items. The display of these items is controlled through the
script file mechanism. In this case, the value of items such as script file
flags and buttons are displayed to show the results of script file events.
Test panels are defined by selecting ‘New Panel’ from the ‘Test’ menu.

How to create script files

Script files are created by selecting ‘New’ from the ‘File’ menu These are
text files containing ‘BASIC-like’ commands to control execution and to
perform events at specified points during the execution. A full list of the
script file commands is given in the chapter entitled ‘Using Script Files’.
Once a script file has been created it may be executed at any time.

The appropriate script options, available from the ‘Test’ menu, are used to
perform these tasks. Tool bar icons also exist for starting and stopping
script file execution.

Fast Startup Guide Common debugging features explained

Micropak 75XL User Manual 13

How to invoke tracing

A trace buffer is provided and can be switched on and off at random to
capture required sections of executing code. This is achieved by selecting
‘Debug’ from the ‘Options’ menu and clicking the appropriate check box.

The buffer contents can be displayed using the ‘Trace’ menu options.

How to configure the environment

The ‘Options’ menu and the ‘View’ menu contain a number of items
which can be configured.

The ‘Options’ menu includes the following:

• ‘Debug’ options. Here you can select the run mode (‘fast’ or
‘slow’), select trace buffering and enable signal output. You
can also specify the size of the signal and trace buffers and the
maximum number or time duration of script file instructions
to be run for any one event.

• ‘Editor’ options. Here you can select the number of tab stops,
the size of the ‘undo’ buffer and enable/disable the scroll bars.

The ‘View’ menu includes the following:

• Screen items. The tool and status bars can be turned on or off.

• Syntax colouring. Syntax colouring available for editing
source files can be turned on or off.

How to set up automatic testing

Automatic testing can be achieved by writing one or more script files.
Each test must be planned in detail and the correct test panels built to
show the required output from the test.

How to obtain help

An on-line help facility is provided and is accessible by using the ‘Help’
menu option or by pressing the F1 key.

Common debugging features explained Fast Startup Guide

14 Micropak 75XL User Manual

Tutorial The example application - stepper motor control

MP75XL User Manual 15

Tutorial

This section details an example Micropak 75XL session, giving
illustrations of the various ways in which the simulator can be used and
the facilities it offers.

The example application - stepper motor control

The target code we use here is intended to control a stepper motor in
response to two simple push-button control switches. The hardware
environment is illustrated in this block diagram:

M

drivebuffers

uPD3000
0

12

P2 .0

P2 .1

P2 .2

P2 .3
P1 ..0

P1 ..1
'STOP'

'START'

R=10K
5V

0V

R=10K
5V

0V

0V

The simple stepper motor driver used as an example

A device will drive the 8 phases of a stepper motor via appropriate drive
buffers.

Drive control is to be by two simple push buttons each of which is wired so
that operating the push button switches a port line between GND and Vdd.
Port 1 pin 0 is used for the ‘START’ button and port 1 pin 1 is used for
the ‘STOP’ button. The individual motor phase coils are to be driven
from the 4 pins of Port 2.

Setting up the test environment Tutorial

16 MP75XL User Manual

What the example firmware needs to do

The firmware must generate the appropriate series of stepper motor drive
signals.

It should also monitor the state of the push buttons to detect switch
operations and interpret these so that one button shall cause the stepper
drives to start, and the other shall cause the motor to stop. Only new
switch presses should be actioned.

From the point of view of initialisation and preparation, the firmware will
need to activate the output buffers for the stepper outputs, and set up an
on-chip timer to trigger the timing of new phase drives. We will return
for a more detailed look at the firmware later, but for the moment we must
consider what is required for the test environment and how this
environment is created using the Micropak 75XL simulation.

Setting up the test environment

In order to exercise the controlling firmware it will be useful if we can set
up Micropak 75XL to mimic the effect of the two switches, and to monitor
the phase drive outputs.

The switches and phase drives are the basic inputs and outputs of the
controller and are therefore the minimum we need for ‘black box’ testing.
However, it will probably also aid the debugging process if we can see the
activity of the internal timer used for stepper phase timing and some of the
important program variables. We will then be able to see the relation
between the internal activity of the firmware under test and the actions it
makes on external conditions.

Creating a new project

We start by creating a new project batch file for the firmware under test.
Select the menu options ‘Project’, ‘New’, and then enter the name of the
project file in the file box ie:

‘tutorial.bat’

At this point the processor to be simulated can be chosen from a selection
list. You may however leave the default processor at this time.

Tutorial Setting up the test environment

MP75XL User Manual 17

Editing the project file

The next stage is to edit the project file in order to specify the source files
for the project and the linker option. You should therefore select the menu
option ‘Project’ ‘Edit’. Files can then be selected from the file list for
inclusion in the project. Each file is included by making your selection and
then pressing the ‘Add’ button. The following file must be included :-

stepper.asm

Once this file has been added to the project you should press the ‘Close’
button.

Building the project

Now that the project contents has been specified you should instigate a
project rebuild to generate the target code. This can be done by selecting
the ‘Project’ ‘Rebuild All’ menu or by using the following tool bar icon :-

The Rebuild All icon

Output from the build tool chain will be shown in the output window.
When the re-building process is finished, the output window should be
closed and you will then see the source code displayed in a source window.

Displaying peripherals and data

Peripheral and data items for display may now be selected. To display the
internal timer therefore select ‘Device’ from the ‘Window’ menu to obtain
a list of the device windows available and select the ‘Timer/Event Counter
0’. The illustration below shows the selection of the timer device.

Once opened any window may be moved, re-sized, maximised or
minimised as in any standard Windows application. The second
illustration below shows the timer window selected.

Setting up the test environment Tutorial

18 MP75XL User Manual

Here we are selecting a window for display:

Using the menus to select a timer view item

Here is the resulting device window:

This window shows the states and activity of the internal timer we will be
using. At this stage, (i.e. before executing any program sections) this will
be in the ‘reset’ condition.

Tutorial Setting up the test environment

MP75XL User Manual 19

Setting up the push buttons

Setting up the switch simulations requires a little more thought. Micropak
75XL includes for each port line, the ability to simulate a single (perfect)
external voltage generator in series with a single external series resistance.
The voltage of the generator and the resistance of the series resistance can
both be changed as required whilst the simulation is running.
Furthermore a connection between the external circuitry and the port can
be set or broken. For more information about this facility see the later
section on Port simulation techniques.

For our purposes here, we can use this possibility to simulate the two
conditions of the switches by changing the voltage generator from Vdd to
GND and vice versa.

Setting up the test environment Tutorial

20 MP75XL User Manual

The following illustration shows the pin windows set up with required
values. To enter values you merely overtype in the relevant boxes. The
illustration shows the two connections in the Vdd condition.

The port pin windows show and set pin conditions

We will start with the switches in the Vdd condition. Select ‘Pin’ from
the ‘Window’ menu to display a list of all possible pins. Then select
‘P10/INT0’ and ‘P11/INT1’ from the list to display these windows: now
set the external network components (Vi) and (Ri) of each pin with the
values shown above. Finally, click on the connect boxes of each pin to
make the connections.

Phase output drive displays

It will be interesting to monitor the drive outputs in two ways.

Firstly, we can set up a view in which the state of the outputs is
represented as a circular pattern, as an analogue of the physical
arrangement of the associated coils within the motor itself.

Secondly we can use the Micropak 75XL plot recording style of displays
in signal windows to show the detailed timing relationships between the
phased outputs.

Tutorial Setting up the test environment

MP75XL User Manual 21

Setting up a test panel of grouped items

Test panels containing groups of items for display can be specified.
Firstly, select ‘New Panel’ from the ‘Test’ menu to provide a new test
panel in which to work. A palette will be displayed showing the items you
can display. For this example we will select a flag item for each of the
individual Port 2 output lines. This is illustrated below:

Individual phases - inverse video means active

Item types, either buttons, flags, text or edit boxes are selected from the

palette which is displayed when the edit mode is entered and these items
can be placed in the test panel by ‘clicking’ the mouse at the required
position in the panel.

You should select the ‘flags’ option by clicking the ‘flag’ radio button in
the palette window. You should then place four flags in the panel by
moving the mouse to four different places, clicking on each place to set
down one flag. The move option may then be selected to make any further
adjustments to the positions of the flags or to delete flags.

Setting up the test environment Tutorial

22 MP75XL User Manual

The final task is to specify the properties of the flags. A properties dialog
box can either be selected from the ‘Test’ menu or by double-clicking the
flag when ‘Move’ is selected on the palette. The properties of each item
consist of a unique caption to be displayed and an identity which is used to
connect the item with script file control. You should give the names
“phi_0” to “phi_3” as both the identity and the caption for each of the port
lines respectively.

The visual state of each item (either normal or inverse video) is controlled
by the actions of a script file which will need to be invoked in order for the
test panel to be activated. The facilities provided by the script language
are described in later section. However, for our purposes we need to be
aware that to use these facilities it is necessary to define a test panel
containing the items for display and to set up a script file to define the
conditions for controlling the display of the items.

Using the editor to define a script file

In order for the items in the test panel to display the status of the port
lines, a script file needs to be written. Here we will use the editing
facilities of Micropak 75XL to write a simple script file for this task:

A sample script file to input

p46% = pin(46)
p47% = pin(47)
p48% = pin(48)
p49% = pin(49)
on event (p46%) run show
on event (p47%) run show
on event (p48%) run show
on event (p49%) run show
event (p46%) on
event (p47%) on
event (p48%) on
event (p49%) on

end
show:

setflag "phi_0",getv(46) > 2.5
setflag "phi_1",getv(47) > 2.5
setflag "phi_2",getv(48) > 2.5
setflag "phi_3",getv(49) > 2.5

end

Tutorial Setting up the test environment

MP75XL User Manual 23

Script files consist of one or more event handlers. The first initialisation
event handler defines the conditions to be recognised and enables further
event handlers to perform the tasks required when the relevant conditions
are encountered during the simulation. In this instance our initialisation
handler consists of four ‘addpin’ statements, one for each of the phase
output pins. The numbers (46,47,48,49) correspond to real pin numbers
on the device. All four statements are similar and define ‘show’ as the
entry point of the handler to be used whenever the corresponding pin
voltage is changed. Thus after initialisation any change in voltage on any
of these pins e.g. pin 46, will trigger the event handler ‘show’. ‘show’
fetches simulated pin voltages for all four pins and updates the test panel
flag items called ‘phi_0’, ‘phi_1’ etc., to show the current pin conditions.

The screen display above shows the contents of the script file to be created.
You should open a new file by selecting the ‘New’ option from the ‘File’
menu.

You can then enter the text directly using the normal edit facilities and
save the file when complete, giving the file name:

PORT0.SCR

To see how the script file operates you must select ‘Run Script’ from the
‘Test’ menu.

To check the operation of the script you can now enter some values
directly into the port 2 and you will see the test panel display change
according to the values entered.

To do this you should open the port 2 window by selecting ‘Device’ from
the ‘Window’ menu and choosing port 2 from the list of devices. In order
to effect changes to the port you will need to set the ‘PM’ box in the
window to ‘1’ (port mode as output) and then if you enter values into the
pin boxes in the window you should see the display in the test panel
change. What is happening here is that these actions trigger the script
event handler ‘show’ which then updates the test panel.

We can now move on to an alternative possibility for displaying port
conditions.

Setting up the test environment Tutorial

24 MP75XL User Manual

Setting up a plot recording of the drive lines

Selecting ‘New Signals’ from the ‘Trace’ menu will display an empty
signal box. You must now specify the items you wish to plot by choosing
‘Edit Signals’ from the ‘Trace’ menu. A list of items for plotting is shown
and you can specify the individual port lines, clicking the ‘Add’ button
after each selection. This action will include plot lines for all 4 port 2
outputs simultaneously.

In order for the signal window to plot the lines during processor execution
we must enable the signal operation and ensure that the signal buffer is set
to a size capable of holding enough information for plot records. To do
this select ‘Debug’ from the ‘Options’ menu. A dialog box will appear, on
which you should click the ‘signal enable’ check box and enter a value of
‘1’ (representing 1 second), as the size of the signal buffer.

The signal window will initially appear empty. The plots are only drawn
as the simulation progresses. Here is an example of how the box might
appear later when you have run the firmware:

Signal windows show the relative timing of signals clearly. They can be
scrolled backwards to see the past changes. The amount of past detail that
is stored depends on the buffer size. For more information about using
plot records see the later section.

Tutorial Loading the example firmware

MP75XL User Manual 25

Loading the example firmware

The distribution disk contains the necessary source and other files to see
the example running. Assuming that you opted to install the tutorial,
these files will be in an appropriate directory on your system and you can
load and run the sample program. In this instance the files will have
automatically been loaded when you rebuilt the project and a source
window displayed. If you have minimised this window you should now
restore:

A sample source file

The source is displayed as it is held in the file. That is all user comments
etc are included in the display.

 The scroll bars, the cursor and PgUp, PgDn keys enable you also to scroll
forwards and backwards through the example source code. Use these
facilities to examine the example source code, and relate it to the
descriptions which follow. The ‘View’ menu has options for setting and
removing ‘Bookmarks’ in the window and moving between the marks set.
Lines on which Bookmarks have been set are coloured with a cyan line.

Understanding the example Tutorial

26 MP75XL User Manual

Understanding the example

Timing

The main features of the system timing are shown below:

The timing of events in the example

The on-chip timer is used to generate a regular timing interrupt.

This interrupt causes a period counter to be decremented. When this
counter reaches zero, a new phase pattern is driven to the motor circuitry
and the period counter is reloaded to time the next inter-phase gap.

P2 .3

P2 .2

P2 .1

P2 .0

period counter

phase counter

underflows

Tutorial Understanding the example

MP75XL User Manual 27

Program flow

The flow chart which follows shows how the program is structured to
perform these various actions.

Control flow in the example

After initialisation, control enters the main loop.

Each pass round the loop is synchronised to the timer interrupt by waiting
at the start of the loop until the flag ‘TimerTick’ is set by the timer
interrupt handler.

reset timer
int

initialise set timer_tick flag

timer_tick flag

wait fortimerint.

scanbuttonsand

decrementcounter

counter=0

reloadcounter

yes

no

returnfrominterrupt

stepmotor
no

drivenewphase

yes

updatestepping flag

Understanding the example Tutorial

28 MP75XL User Manual

The activities of the loop begin by scanning the ‘start’ and ‘stop’ buttons
and setting or clearing the drive flag appropriately. Next, the period
counter is decremented and tested. When there are no more ticks in this
interphase period (i.e. the counter reaches ‘0’) the counter is reloaded with
the value of the current period. The drive flag is then tested to see if the
motor is in operation. If it is, a new phase pattern is driven out to the
motor.

Initialisation

The initialisation function is run first. This sets up the program variables
to appropriate initial states and sets up the interrupt controller and timer
to generate a timer interrupt at preset intervals. Program variable set up
includes setting the phase state to zero, and the counter, which counts
down to the next phase, set to the maximum value ready to start counting
down. The drive flag, indicating whether or not the motor is operational,
is set to ‘Stepping’ ie active.

Finally, interrupts are enabled, and control passes back to the main loop.

Main code

The code consists of a continual loop. Firstly, when a new key press is
detected, the motor is switched on or off accordingly. Then a test of the
flag set by the timer interrupt is made . When this is detected, the switch
lines are scanned by appropriate routines one by one.

The period counter (‘count’) is decremented at each pass of the loop.
When it reaches zero, it is reloaded with the variable ‘period’. The drive
flag is then tested to determine if the motor is operational, and a routine is
called to drive new phase outputs. Control then returns to the start of the
loop.

Tutorial Understanding the example

MP75XL User Manual 29

The main line code

MainLoop:

MOV A,timer_tick ; while (timer 0 has not

overflowed)

SKE A,#0 ; {}

BR SeenTimer0 ;

BR MainLoop ;

SeenTimer0:

MOV A,#0 ; reset timer overflowed flag

MOV timer_tick,A ;

CALL !SIfStartButton ; if (push_on_start_button)

CALL !StartStepping ; { start stepping }

CALL !SIfStopButton ; if (push_on_stop_button)

CALL !StopStepping ; { stop stepping }

MOV A,count ; count = count -1

DECS A ;

NOP ;

MOV count,A ;

SKE A,#0 ; count reached 0

BR MainLoop ; no

Understanding the example Tutorial

30 MP75XL User Manual

Processing functions

In the example, for clarity, the task is broken down into several functions.
They perform the following :

• scanning for new button presses (one for each of the two
buttons).

• getting a new phase into the motor drive outputs.

• setting a new phase into the motor drive outputs.

These individual routines are relatively straightforward and are not
specifically listed here. You can inspect the source for these routines by
scrolling the code displayed in the source window.

Interrupt handler

The time interrupt is kept as simple as possible. The only significant
action is the setting of the flag which the main line code tests to detect the
passage of another interrupt period:

The handler for the timer interrupt

; Timer 0 interrupt

I_Timer0:

MOV A,#1 ; record tick for main line code

MOV timer_tick,A ;

 RETI ;

Tutorial Executing the code - The PC indicator and cursor

MP75XL User Manual 31

Executing the code - The PC indicator and
cursor

We are now ready to try executing the code. First of all, generate a reset
in the system by selecting ‘Reset’ from the ‘Debug’ menu. The PC will be
set on the first line of the real program and is shown by a yellow bar. This
will be at the label Reset.

Scroll down through the code and observe the PC indicator until you reach
the main loop at the label MainLoop.

Click on the first line of code after the function declaration ie the call to
the initialisation function. The cursor is set here.

Go to cursor

You can now give the ‘Step to Cursor’ command to execute the program
to this point. This command can be given either by selecting ‘Step to
Cursor’ from the ‘Debug’ menu or by clicking the appropriate tool bar
icon:

The ‘Step To Cursor’ icon

When execution arrives at this point, you will notice the program counter
(PC) indication by the changed colour at this line.

The source line, which corresponds to the current program counter
position, is shown in yellow. Because the program counter points to the
next instruction to be run, the yellow line is the one that is about to be run.

Executing the code - The PC indicator and cursor

Tutorial

32 MP75XL User Manual

Single Stepping

It will be interesting to watch the effects of the code on the view items we
have already set up. Single stepping gives you the opportunity to observe
these individual effects clearly, instruction by instruction.

Single stepping can be done by selecting ‘Step Into’ from the ‘Debug’
menu or by clicking the appropriate tool bar icon:

The ‘Step Into’ icon

As execution proceeds you will see the yellow bar showing the current
program counter position gradually move through the routine.

Notice that because the program counter points to the next instruction to
be executed, the PC indication shows the actions that are about to be
performed, not the action that has just been carried out.

Animating the code - multi stepping

Multiple stepping executes one step at a time, and displays the program
counter position after each instruction by moving the yellow bar. This
function, sometimes known as ‘animation’, shows execution moving
through the code, making program flow clear.

Animation can be started either by the selecting ‘Go’ from the ‘Debug’
menu or by clicking the appropriate tool bar icon:

The ‘Go’ icon

Tutorial Simulating button presses

MP75XL User Manual 33

Note, however, that because the whole screen display is updated, including
re-writing the source window and showing the program counter bar,
execution speed in ‘animation’ mode can become slow. When using this
mode of execution speed may be increased by minimising those windows
you are not interested in observing at this time. This applies to the listing
window as well as the device windows.

Fast debug mode

Having observed the individual stages of initialisation we can now proceed
to run the code in a fast debug mode. In this mode, only the test panels
are updated during execution and therefore the speed of execution is
increased. To initiate this mode either select ‘Fast’ from the ‘Mode’ field
of the ‘Debug Options’ window, having selected the latter from the
‘Options’ menu, or click the appropriate tool bar icon:

The slow icon (A tortoise) The fast icon (A hare)

Running in fast mode should enable you to see the stepper drive activity as
a circulating effect in the test panel display.

Simulating button presses

With the code running, we can now investigate the behaviour of the
firmware in response to button presses. For this you should return to the
slow debugging mode, so click on the debugging mode icon to return to
slow mode. The icon shown represents the current state, so you should
click on the ‘hare’ to show the ‘tortoise’.

Test context files Tutorial

34 MP75XL User Manual

You can simulate the effect of a push-button operation by changing the
voltage generator from 5 to 0. This mimics the effects of the switch
operation causing the voltage at that pin to fall, triggering the main loop
to detect a switch operation and stop the motor. To perform this task you
should either restore or make active the pin window P11 (the stop button)
and change the voltage by clicking on the ‘connect’ box to disconnect. To
release the button you would change the voltage back to 5 again, however,
you should pause for a short while between the operations to ensure that
the switch sensing code sections are run.

To start the motor again you should simulate a button press on pin P10.
The results of each button press should be seen in both the test panel
display and the plots recorded in the Signal window.

Test context files

So far we have seen how to set up a test environment and use it to run our
target code. You may find it useful to save this environment in order to
re-instigate the test at a later stage. To save your panel file choose the
‘File’ ‘SaveAs’ option. The file should be saved with the extension .PAN.
The conxtext information including information on the windows and
panels were open and their position may be saved through the ‘Test’,
‘SaveAs’ menu option. You must give the test context a file name when
saving it. If you wish the context to be opened automatically when you
open a project you should give the file the same name as the project name.
The extension is .TST.

When we started the tutorial we did not open an existing project file, as
the tutorial was described to create a new one. An example project file for
the tutorial is provided to go with the tutorial example:

stepper.bat

To invoke this use the ‘Project’, ‘Open’ menu sequence. You will then
see a pre-defined set of windows appear on the display. The next section
describes how test simulations may be made easier and faster by using
script files associated with the pre-defined project context file.

A new window displaying two ‘Window style’ buttons, labelled as ‘Stop
button’ and ‘Start button’ will be seen. These items are linked via the
script file to the two button sensing pins.

Tutorial Using the script file

MP75XL User Manual 35

This is how the new window will appear:

The context file reads in the test panel

Using the script file

Micropak 75XL includes a ‘script file’ processor as described briefly in an
earlier section. This allows events in the simulated environment to be
controlled and monitored automatically according to details defined in the
script file. Script files are described more fully in a later section, but we
will illustrate their use here by providing a more convenient way of
running our test session.

The distribution disk contains a sample script file to go with the tutorial
example:

stepper.scr

To invoke this, select ‘Open’ from the ‘File’ menu. This will display a
dialog box allowing the file to be loaded. Select or enter the name
(‘stepper.scr’) and the script file itself will appear in a ‘text window’.

Checking the generated sequence Tutorial

36 MP75XL User Manual

To action the script in the file, use the menu option ‘Run Script’ from the
‘Test’ menu to action the file commands. The results of any further
simulation will then cause changes to the display according to the events
translated by the script file.

Clicking on the button items shown in the new test panel will toggle the
voltage switch on pins P10 and P11 to simulate the button presses and
releases.

For more details see the later section on script files.

Checking the generated sequence

If you study the generated output phase signals carefully you may notice
an anomaly. In fact, the example program includes a bug, which results
in one of the patterns driven out to the port being incorrect and showing
all the lines being driven high together. This will result in a disturbance
to the circulating pattern and can also be seen in the plot record display in
the signal window.

Tracking down the bug

In order to find the problem we will set a breakpoint just after the code
line which sets new phase patterns into the hardware.

We will also activate trace buffering so that we can ‘backstep’ from the
breakpoint, to see the code line which generates the incorrect pattern.

Firstly, we must stop our current execution. To do this use the ‘Alt-F5’
key or select ‘Stop Debugging’ from the ‘Debug’ menu.

Setting a breakpoint

Scroll through the code until you find the statement:

call !NewPhase:

This routine drives the next phase of the motor.

Click on the code line just after this to set the cursor position. This line
has the instruction:

br MainLoop;

Tutorial Tracking down the bug

MP75XL User Manual 37

To set the breakpoint here click the ‘Toggle Breakpoint’ tool bar button:

The ‘Toggle Breakpoint’ icon

Lines on which breakpoints are set are shown in red. Clicking the
breakpoint icon toggles the breakpoint at the cursor position on or off.

Once we have set the breakpoint we need to turn on trace buffering so that
on reaching the breakpoint we will be able to step backwards and check
the previous program actions.

Activating trace buffering

To activate the trace buffer, select ‘Debug’ from the ‘Options’ menu and
click the ‘Enabled’ check box for the trace buffer. Micropak 75XL allows
the size of the trace buffer to be adjusted, but the default size will be
suitable for us here.

Running to the breakpoint

Now we have set the breakpoint and activated the trace buffer we can run
the code again (the ‘Go/Stop’ tool bar button is probably the easiest way).
When the breakpoint is reached execution is halted, a message appears
and a beep is heard.

You will notice that the yellow line indicating the PC marker is now on
our chosen instruction, and that a new pattern will just have been driven
out.

Checking the individual drive patterns

You should now restart the execution using the ‘Go’ tool bar button or by
selecting ‘Go’ from the ‘Debug’ menu. Correct patterns should activate
one output or two outputs simultaneously. If the current state of the phase
outputs shown in the panel window currently has all outputs activated, the
erroneous pattern must have been driven out. If the current pattern
appears correct (i.e. it has one or two outputs active), then you can run to

Making corrections Tutorial

38 MP75XL User Manual

the next pattern by using the ‘Go’ tool bar button again. Continue this
process until the faulty pattern has just been driven out.

At this stage we know that the pattern just output was wrong. Examining
the code shows that the pattern is written to the data item ‘MotorPort’
from values derived in ‘NewPhase’.

The statements in ‘NewPhase’ contain each of the specific patterns written
to the data item ‘MotorPort’. In order to know which of the phases set the
faulty pattern we need to know which lines were run just prior to the
hardware updating.

The ‘Backstep’ facility allows us to ‘turn the clock back’ and effectively
run the code in reverse, tracing the flow of execution back up through the
code.

To invoke this facility select ‘Step Back Into’ from the ‘Trace’ menu.

Using this facility you will find that the following statement was the
villain:

Phase3Test:

mov b,#1111b

The pattern in question is specified here as a binary constant (1111B) and
it can now be seen that this does indeed set all lines active. In fact this
value should be (0100B). Having located the bug we can now move on to
see how to make an appropriate correction.

Making corrections

To correct this bug you can use the text editing facilities of Micropak
75XL directly.

Position the cursor in the faulty line and make the correction using the
cursor keys and overtyping, etc. After editing you must then save the file.

Tutorial Moving on

MP75XL User Manual 39

Re-running after corrections

You must now rebuild the project to ensure that the corrections are
included in the simulation. To do this select ‘Rebuild All’ from the
‘Project’ menu or use the tool bar button described earlier.

The 75X tool chain will automatically be invoked and a new executable
file will be generated. Once the rebuild process has finished, the project
files will be re-loaded.

You should now be able to re-run the code (e.g. by clicking the ‘Go’ tool
bar button), and this time the phase output sequence should be correct.

Moving on

Having been through this tutorial session you should have some idea of the
facilities which Micropak 75XL offers, and how these can be used to good
advantage in your own testing or development programme.

The later sections of this guide provide reference information covering all
the various facilities in more detail.

Perhaps before leaving the tutorial set up, you might find it helpful to use
the context of the tutorial example to experiment with some of the other
facilities described in later sections. Here are some suggestions:

• Step over - to skip over, say, the button testing routines.

• Step out - single step into the ‘NewPhase’ routine and then
use the ‘Step Out’ command to run to the end of this routine.
This facility is one of the most useful when investigating code
so it’s beneficial to learn how to use it early on.

• Watch windows - Micropak 75XL provides various ways of
viewing variables. Try adding some data items to a watch
window to show the interphase counter (‘Count’) and the tick
recording variable (‘TimerTick’).

Moving on Tutorial

40 MP75XL User Manual

• Trace buffering - enable the trace buffer for a while, observe
the effect on speed, then use the ‘Backstep’ facilities to watch
the code running in reverse. Note that the PC is shown in
green.

• Port views - ports can be viewed 4 lines at a time. Showing
port 0 in this way would be a good example of the use of this
facility.

• Breakpoints - use the ‘Breakpoints’ command to set a
breakpoint at the code line which deals with the ‘Start’ button
being detected as active, then run the code, activate the button
and see if the breakpoint is correctly reached.

• Source editing - try some of the editor functions available on
the ‘Edit’ menu.

You will probably find most of these functions can be invoked easily using
the menu system. However, if you need more explanation or information,
try the on-line help facility, or the later sections of this manual.

User Interface Details The Micropak 75XL screen

Micropak 75XL User Manual 41

User Interface Details

The Micropak 75XL screen

When the Micropak 75XL program is started the following window is
displayed:

 Menu Bar Tool Bar

 Status Bar

The Micropak 75XL screen User Interface Details

42 Micropak 75XL User Manual

The main user interface elements are as follows:

Name Description

Menu Bar Lists the available menus, e.g.:

Menu When a menu is selected it lists the commands specific to that
menu, e.g.:

Note that when a menu option is not available it is displayed
‘greyed out’ and cannot be selected.

Tool Bar The tool bar displays a number of buttons which provide quick
access to some of the menu commands e.g.:

Desktop This is the background area of the screen.

Icon This displays a window in a compact form, e.g.:

Window This displays source code, help information, simulated objects
etc., e.g.:

User Interface Details Window elements

Micropak 75XL User Manual 43

Name Description

Scroll Bars These change the position within a file or list, e.g.:

Status Bar This displays information about your current session,
including processor type, position within a file, etc., e.g.:

Window elements

Close box

Title bar Minimise button

Maximise button

Border

Horizontal scroll bar

Vertical scroll bar

Page Up area

Page Down area

Scroll Button

Border

Window elements User Interface Details

44 Micropak 75XL User Manual

Name Description

Window border Used to size the window by dragging with the mouse

Window title Indicates the window contents. Also used for moving
the window by clicking and dragging

Close button Closes the window when double-clicked, e.g.:

Minimise button Reduces the window to an icon when clicked, e.g.:

Maximise button Enlarges the window to its maximum size when
clicked, e.g.:

Restore button Restores the window to its original size when clicked
with the mouse, e.g.:

Scroll Up arrow Click once with the mouse to scroll up one line at a
time, e.g.:

Scroll Down arrow Click once with the mouse to scroll down one line at a
time, e.g.:

Page Up area Scrolls up one page at a time when clicked once

Page Down area Scrolls down one page at a time when clicked once

Scroll button Indicates the relative position in the file/list. Drag
with the mouse to change position in the file/list

User Interface Details Window elements

Micropak 75XL User Manual 45

Menu operation

Menus can be invoked either by the appropriate keyboard actions or by
clicking with the mouse. Menu options are grouped under main headings
in a menu bar located across the top of the window.

Clicking on one of the options in the menu bar will cause the appropriate
pull-down menu to be displayed, e.g.:

The options presented can then be selected by moving the mouse cursor to
the desired option and clicking again. Note that menu options which are
not relevant to the current operation are shown ‘greyed out’.

Sub-menu options normally have a single character underlined. If the
associated key is pressed whilst holding down the Alt key the appropriate
sub-menu will be displayed. This provides an alternative to using the
mouse to display the desired sub-menu.

In addition to this underlined character, some menu options also include a
short cut key or accelerator key which can be used to invoke a function
directly. These are described to the right of the menu text, e.g.: using the
combination of the Ctrl and ‘D’ key will display the ‘Device Window’.

Menu options which, when selected, display dialog boxes are shown with
‘...’ at the end of the option field, e.g.:

Menu function reference descriptions User Interface Details

46 Micropak 75XL User Manual

Menu function reference descriptions

The following tables show how the functions accessed via the menu
system are grouped:

File Edit View Project Test
New Undo Line New Open
Open Redo Next Error Open Save As
Close Cut Previous Error Edit Run Script
Save Copy Toggle Bookmark Close Stop Script
Save As Paste Next Bookmark Assemble File Stop All Scripts

Delete Previous Bookmark Link New Panel
Print Find Clear All

Bookmarks
Rebuild All Show Panel

Palette
Print Preview Replace Toolbar Stop Build Panel

Properties
Print Setup Read Only Status Bar Recent Projects Panel Grid

Setting
Exit Syntax Colouring Recent Tests
Recent Files

Debug Trace Options Window Help
Go Go Back Project New Window Micropak

Workbench
Step Into Step Back Into Debug Cascade Build Tools
Step Over Step Back Over Editor Tile About Micropak

75XL
Step Out Step Back Out Arrange Icons
Step to Cursor Step Back to

Cursor
Stack Source
Windows

Go and Go Clear Timing
Interval

Timing

Stop Debugging New Signals Watch
Reset Edit Signals Registers
Set PC to
Cursor

SignalsZoom In Output

Breakpoints Signals Zoom Out Device
QuickWatch Snap Signals Pin
Add Watch Item Open Windows

User Interface Details Menu function reference descriptions

Micropak 75XL User Manual 47

Menu : ‘File’

This group of menu options deals with file handling and printing,
including creating a new panel. Note that a list of the four most recently
used files is maintained for convenience. The exit command for the
Micropak 75XL program is also accessed from this menu.

Option Description

New Start a new file

Open... Open an existing file

Close Close a currently open file

Save Update the disk copy of the current file

Save As... Write the current file to disk, optionally with a different name

Print... Print the current file

Print Preview See on screen how the current file will appear when printed

Print Setup... Review printing options

Exit Leave the Micropak 75XL program

Recent Files Open a recently accessed file

Menu : ‘Edit’

This group of menu options deals with the editing of files. Any text file
may be edited using these functions. If a file has not been opened prior to
editing, an ‘untitled’ file will be created which may be saved later. See
the ‘Options’ menu for options relating to this menu.

Option Description

Undo Undo the most recent editing action

Redo Redo the most current editing action

Cut Remove the selected text from the current file/list and
place in the clipboard

Copy Copy the selected text to the clipboard

Paste Insert the current clipboard contents

Delete Delete the selected text from the current file or list

Find Find a string of characters in the current file.

Replace Find and replace a string of text with another

Read Only Mark the current file as read only

Menu function reference descriptions User Interface Details

48 Micropak 75XL User Manual

Menu : ‘View’

This menu deals with viewing the main windows and the listing window.
Facilities are provided to place bookmarks and to fold and unfold text in
the listing file. See the ‘Options’ menu for options relating to this listing
display.

Option Description

Line Go to a line number

Next Error Go to the source line containing the next error

Previous Error Go to the source line containing the previous error

Toggle Bookmark Turn a bookmark on/off

Next Bookmark Move to the next bookmark

Previous Bookmark Move to the previous bookmark

Clear All Bookmarks Clear all the defined bookmarks

Tool Bar Turn the tool bar on and off

Status Bar Turn the status bar on and off

Syntax Colouring Enable or disable syntax colouring

Menu : ‘Project’

This group of menu options deals with project-wide facilities. This
includes project context files, script files and rebuilding the executable
file. See the ‘Options’ menu for options relating to this menu.

Option Description

New Create a new project file

Open Open an existing project file

Edit Add or delete files listed for the project

Close Close the current project file

Assemble File Assemble an individual source file

Link Link the object files in the current project

Rebuild All Rebuild a project from scratch

Stop Build Stop the current project rebuild

Recent Projects Load a recently accessed project

User Interface Details Menu function reference descriptions

Micropak 75XL User Manual 49

Menu : ‘Test’

This group of menu options handles the test script files and test panels.

Option Description

Open Open a test file

Save As Save the current window positions and debug options as
a new test file

Run Script Run the selected script file

Stop Script Stop execution of the selected script file

Stop All Scripts Stop execution of all script files

New Panel Create a new panel

Show Panel Palette Display the panel palette, allowing you to add and edit
items

Panel Properties Specify the properties of a test panel item

Panel Grid Settings Specify the grid settings in the test panel window

Recent Tests Display the four most recently opened test files

Menu : ‘Debug’

This group of menu options controls the running of the program when
debugging. It contains various run modes and allows breakpoints to be
set. See the ‘Options’ menu for options relating to this menu.

Option Description

Go Run the target processor

Step Into Run a single instruction

Step Over Run a single instruction or procedure

Step Out Run to a return

Step to Cursor Run until the cursor position is reached

Go and Go Run until breakpoint is reached and run again

Stop Debugging Halt the target processor

Reset Generate a ‘reset’ in the target processor

Set PC to Cursor Set the PC to the current cursor position

Breakpoints Set breakpoints

QuickWatch Inspect the value of the selected variable

Add Watch Item Select an item and add to the watch window

Menu function reference descriptions User Interface Details

50 Micropak 75XL User Manual

Menu: ‘Trace’

This group of menu options controls the trace buffer facilities and the
signal plot display facilities. This menu also includes the facility to clear
the timing counter.

Option Description

Go Back Trace back to start of the buffer

Step Back Into Step back one instruction

Step Back Over Step back one instruction or procedure

Step Back Out Step back to start of the procedure

Step Back to Cursor Step back to the current cursor position

Clear Timing Clear the timing interval counter

New Signals Create a new signal box

Edit Signals Edit a signal box

Signals Zoom In Magnify the signal box

Signals Zoom Out Reduce the contents of the signal box trace

Snap Signals Snap signal display to nearest value transition

Menu: ‘Options’

This group of menu options allows the user to specify options which
control other menu facilities.

Option Description

Project Change project rebuild options for the pre-processors
assembler and linker

Debug Change options for the debug menu including trace
buffer on/off setting

Editor Specify the options for the editor

User Interface Details Menu function reference descriptions

Micropak 75XL User Manual 51

Menu: ‘Window’

This group of menu options allows the user to specify new windows to be
displayed and rearrange existing windows.

Option Description

New Window Generate a new ‘copy’ of the current window

Cascade Arrange all the open windows in a ‘cascaded’ display

Tile Arrange all the open windows as ‘tiles’

Arrange Icons Tidy the display of the icons

Stack Source
Windows

Stack all the open source windows

Timing Open the timing window

Watch Open the watch window

Register Open the register window

Output Open the output window

Device Open a new device window including RAM and Ports

Pin Open a pin window

Open Windows Shows a list of currently open windows

Menu: ‘Help’

This group of menu options gives the user access to the help facilities.

Option Description

Micropak
Workbench

Display help specific to Micropak 75XL

Build Tools Display error and option information for the build tools

About Micropak
75XL

Display version and copyright information

Using dialog boxes User Interface Details

52 Micropak 75XL User Manual

Using dialog boxes

Dialog boxes are used to enter values and make selections. Menu options
which invoke dialog boxes are shown with ... adjacent to the menu text,
e.g.:

Examples of dialog boxes which are specific to Micropak 75XL are shown
in the relevant section. Common dialog boxes such as those for opening
files follow standard conventions. An example is given here:

In order to enter a value into a field within a dialog box you will need to
click into the field using the mouse. The text cursor will then appear in
this field, indicating where the text you type will appear. The following
keys can be used within dialog boxes with their normal editing functions:

Key Function

Ins Toggle in and out of insert mode

Del Delete the character to the right of the cursor

Left, Right, Up or
Down Arrow

Non destructive cursor movement

Tab Move to the next field on the window

Backspace Delete the character to the left of the cursor

User Interface Details Using dialog boxes

Micropak 75XL User Manual 53

List boxes

These are special fields which allow the selection of one item from a list,
and incorporate an arrowed button alongside enabling you to ‘pick and
choose’ from the displayed choices, e.g.:

Radio buttons

Again, special fields, called ‘radio buttons’ require you choose between
several choices displayed on the screen by clicking with the mouse in the
circular area to the left of the field text, e.g.:

Check boxes

These fields enable you select or deselect an option by clicking the box
with the mouse, e.g.: .:

Keyboard actions

Micropak 75XL includes a set of pre-defined ‘accelerator’ key functions.
These allow fast access to the most commonly used menu options. Where
key functions exist they are listed alongside the menu options. A full
listing of these is given in the ‘Keyboard Summary’ chapter.

The tool bar User Interface Details

54 Micropak 75XL User Manual

The tool bar

The tool bar provides a quick and easy way to access many of the most
frequently used functions and consists of a row of buttons, each with an
icon representing the action which will be performed when the button is
clicked using the mouse.

The tool bar icons

Open Document Step Into

Save Document Step Over

Cut Selected Text
To Clipboard

Step Out

Copy Selected
Text To
Clipboard

Step To Cursor

Paste Contents Of
Clipboard

Reset Processor

Find/Replace
Next

Set PC to Cursor

Assemble File Toggle Breakpoint
at Cursor

Link Quickwatch

Rebuild All
Project

Clear Interval

Execute/Stop Test
Script

Fast/Slow Debug
Mode

Go/Stop Open Device

Window

Open Pin Window

User Interface Details Using the on-line help system

Micropak 75XL User Manual 55

Using the on-line help system

Micropak 75XL includes an on-line context sensitive help facility which
can be invoked using any of the following methods:

• Pressing the F1 function key

• Using the Help pull-down menu

• Pressing the Help button on the dialog boxes

Using the on-line help system User Interface Details

56 Micropak 75XL User Manual

Navigating Project Files Project file overview

Micropak 75XL User Manual 57

Navigating Project Files

Project file overview

Micropak 75XL requires files to be organised by project. This section
describes the assumed file grouping and explains how Micropak 75XL
uses the various files involved.

Project files

There are a number of files, each having a specific function, which
collectively constitute a project. These files are as follows:

.BAT Batch file used to control project rebuilding

.PRJ Project information file

.TST Window configuration details

.P File containing code and debugging information from
the listing converter

Projects files are identified by the ‘.BAT’ extension and are opened by
selecting ‘Open’ from the ‘Project’ menu in order to set up a test
environment. Please be aware that opening the project file does not
automatically run script files. The source assembler file will however be
opened automatically, ready for editing or actioning.

The project file is a text file and can be edited directly. It can be used in
one of two ways.

Firstly, if the project is ‘internal’ the batch file will contain just the text
‘REM MicroPak generated batch file - Do Not Modify.’ This will allow
Micropak 75XL to handle all the project rebuilding, allowing the user to
add and delete source files and select from a comprehensive range of
options. If you intend to use this ‘internal’ project rebuilding facility then
do not delete or change the contents of this file.

Project file overview Navigating Project Files

58 Micropak 75XL User Manual

The second way in which the project batch file may be used is for
‘external’ project rebuilding. If this option is desired, simply place in this
file all the commands required for the project rebuilding sequence. Note
that Micropak 75XL does not perform any checking of the contents of this
batch file - it will simply execute whatever commands are placed within it.

Source files are required for rebuilding

Micropak 75XL does not require the original assembler source files in
order to execute code. However, it does require them in order to allow you
to edit the source and to subsequently rebuild the executable file. It also
requires the source file to enable debugging to take place.

Source files are text files and can be edited using the Micropak 75XL
editing functions. They are expected to have the extension ‘.ASM’.

The project information file

The project information file must be present within the project
environment. It has the same name as the project but has a .PRJ file
extension, e.g. ‘PROJECT1.PRJ’. For both types of project (i.e. ‘internal’
and ‘external’) this file defines the processor type selected and the clock
frequencies. In addition, for internal projects, this file also contains
details of the source files and associated options.

The window configuration file

The window configuration file details your test environment in terms of
window position information, breakpoints, watch item names, etc. It
avoids the need to redefine your testing environment each time you start a
new testing session. The file has the same name as the project but has a
.TST file extension, e.g. ‘PROJECT1.TST’.

The debug information file

This file, with a .P file extension, holds the source code to be executed
plus the debug information which is output from the listing converter.
This file is created as a result of the build process and normally uses the
same name as the rest of the project, e.g. ‘PROJECT1.P’.

Navigating Project Files Opening a project

Micropak 75XL User Manual 59

Opening a project

A project is opened by selecting ‘Open’ from the ‘Project’ menu. A dialog
box similar to the following is displayed: An example is given here:

Browse through your drives and directories until the correct project batch
file is located, select it, then click the ’OK’ button.

The appropriate assembler file (with a .ASM extension) will be loaded and
displayed within a window on the ‘desktop space’ of Micropak 75XL.

Further files (such as source files, other assembler files and script files)
may be opened by selecting ‘Open’ from the ‘File’ menu. The following
window is displayed, allowing you to select the file required:

Editing a project Navigating Project Files

60 Micropak 75XL User Manual

Editing a project

Micropak 75XL includes the facility to allow you to add and remove
entries from the list of files which comprise a project. If the ‘Edit’ option
is selected from the ‘Project’ menu the following window is displayed: :

To add a file to the list of files within the project, click the ‘List Files of
Type’ list box and select the type of file to be added from the displayed
list:

Browse the directory structure to locate the file then click the ‘Add’
button. If you wish to add all files from the currently selected directory to
the list, click the ‘Add All’ button.

To remove a file from the list of files in the project select it, then click the
‘Delete’ button.

Navigating Project Files Specify Project Options

Micropak 75XL User Manual 61

Specify Project Options

For both internal and external projects there are a number of options
which you can specify, including processor type, build mode and
command strings for rebuilding the project. The project options are
specified by selecting ‘Project’ from the ‘Options’ menu and Micropak
75XL will display the correct dialog box according to the type of project.
As the options associated with the two types of project differ, each is
detailed separately below.

Internal project options

When ‘Project’ is selected from the ‘Options’ menu the following dialog
box is displayed:

The ‘Build Mode’ radio button allows you to specify whether the
executable file should be a debug type or a release type.

The ‘Processor’ list box contains the processor type for which the project
is being built. Note that this is not required for the rebuilding process but
for creating the processor in the simulation. If the processor type is
changed it is necessary to reload or rebuild the project before the change
will take effect.

Specify Project Options Navigating Project Files

62 Micropak 75XL User Manual

Options for the Assembler and Linker are specified by clicking the
appropriate button to display a dialog box from which the settings for the
appropriate tool can be viewed and changed as required. As an example,
when the Assembler button is pressed a dialog box similar to the following
is displayed:

The ‘Build Options’ radio button indicates to which build mode the
options are relevant.

The ‘Options String’ is a non-editable text box which displays the options
as they would appear if entered at the DOS command line.

Note that the options will only take effect when the ‘OK’ button is
pressed.

Navigating Project Files Specify Project Options

Micropak 75XL User Manual 63

External project options

When ‘Project’ is selected from the ‘Options’ menu (and the project is an
external type) the following dialog box is displayed:

The ‘Target Name’ is the name of the debug or release executable file and
is, by default, assumed to be the batch file name with a .ABS extension.

The ‘Processor’ list box allows you to select the type of processor for
which the project is being built. This is not required for the rebuild
process but is necessary for creating the processor for the simulation. If
the processor type is changed a project reload or rebuild is required before
the change will take effect.

The ‘Build Mode’ radio button allows you to specify whether the
executable should be a debug type or a release type.

The ‘Debug Build’ field allows you to specify the DOS command string
required to rebuild the debug version of the project. The name is , by
default, assumed to be same as the batch file.

The ‘Release Build’ field allows you to specify the DOS command string
required to rebuild the release version of the project. The name is , by
default, assumed to be same as the batch file.

Specify Project Options Navigating Project Files

64 Micropak 75XL User Manual

Using the Editor Opening files

Micropak 75XL User Manual 65

Using the Editor

Micropak 75XL allows text files to be displayed and edited.

Opening files

The normal method for opening a new file is by selecting ‘Open’ from the
‘File’ menu. ‘Shortcut’ methods are also available using the accelerator
function keys or by clicking the following button on the tool bar:

The following dialog box is displayed:

Opening files Using the Editor

66 Micropak 75XL User Manual

Locate the desired file by selecting the required drive and directory and
selecting from the list of files. Note that only files of a specific type will
be displayed, according to the value selected from the ‘List files of type’
field, e.g.:

File specification File type

*.asm Assembler files

.src,.s Structured assembler files

*.mac Macro processor files

* .prn Listing files

*.bat Batch files

*.scr Script files

*.pan Panel files

. All files

File defaults

In addition to the above file types the following extensions are assumed
defaults:

File extension File type

*.bat Project batch file

*.tst Project context files (not text files)

*.p Absolute assembler list file

Using the Editor Syntax colouring

Micropak 75XL User Manual 67

Syntax colouring

As an aid to entering and colouring 75X family source code a syntax
colouring facility is provided. This colours the various elements of code as
follows:

Element Colour

Mnenomics and operators blue

Comments green

Pseudo mnenomics red

Other black

Syntax colouring can be enabled by selecting ‘Syntax Colouring’ from the
‘View’ menu. Note that syntax colouring is only available for source
files.

Mouse driven functions when editing

The text cursor can be set anywhere simply my clicking with the left
mouse button.

Selecting areas of text

Areas of text can be selected by dragging the text cursor from the
beginning of the required area to the end of it. Text blocks selected in this
way will be shown as white on black. Selected blocks of text are
automatically copied to the ‘find’ string whenever the ‘Find’ or ‘Replace’
dialog boxes are opened.

The double-click

If the left mouse button is double-clicked whilst the text cursor is
positioned within a word, it will be selected and editing will now be in
word mode.

Editor options Using the Editor

68 Micropak 75XL User Manual

The triple-click

If the left mouse button is triple-clicked whilst the text cursor is positioned
within a line, the text within that line will be selected and editing will
change automatically to line mode.

The shifted left hand click

If the left mouse button is clicked whilst the Shift key is pressed, the text
between the current text cursor position and the current mouse cursor
position will be selected.

When the editor is in word or line mode, the selected area of text will
include that previously selected by double-clicking or triple-clicking.

Editing possibilities

Once an area of text has been selected it can be:

• Deleted (Del)

• Removed from the file and placed in the clipboard (Cut)

• Copied to the clipboard (Copy)

• Pasted from the clipboard to another position (Paste)

These functions can be invoked via the ‘Edit’ menu or by using the
appropriate keyboard accelerator shortcuts.

Editor options

Editor options are set by selecting ‘Editor’ from the ‘Options’ menu. The
following dialog box is displayed:

Using the Editor Editor options

Micropak 75XL User Manual 69

The tab spacing can be changed to any number between 1 and 62. The
default number is 8 characters.

The horizontal and vertical scroll bars can be deselected independently by
clicking the appropriate check box, e.g.:

The ‘Undo’ buffer is used to store editor commands and associated text in
order to enable actions to be subsequently undone by the ‘Undo’
command. The size of this buffer may be set between 0 Kbytes and 31
Kbytes.

Keyboard functions when editing Using the Editor

70 Micropak 75XL User Manual

Keyboard functions when editing

Basic text editing is performed by positioning the text cursor and using the
standard editing keys and functions. The position of the text cursor is set
using the cursor keys or by clicking with the left mouse button.

The standard editing keys and functions are as follows:

Key Function

Ins Toggle between insert and overwrite mode

Del Delete character to right of cursor or previously selected block

Backspace Delete character to left of cursor

Home Skip to beginning of line

End Skip to end of line

PgUp Move one page up

PgDn Move one page down

Left Cursor one character left

Right Cursor one character right

Up Cursor one character up

Down Cursor one character down

Ctrl-Ins Copy to clipboard

Ctrl-Left Move one word left

Ctrl-Right Move one word right

Ctrl-Up Scroll window up one line

Ctrl-Down Scroll window down one line

Ctrl-PgUp Scroll left one page

Ctrl-PgDn Scroll right one page

Ctrl-Home Skip to start of file

Ctrl-End Skip to end of file

Shift-Del Copy to clipboard and delete line

Shift-Ins Copy from clipboard

Ctrl-Z Undo

Ctrl-X Cut

Ctrl-C Copy

Ctrl-V Paste

Return Insert new line

Using the Editor Locating and changing text

Micropak 75XL User Manual 71

Locating and changing text

The following facilities are available for locating and, optionally,
changing specific text within a file:

Facility Function

Find Locate a specified string of characters

Replace Locate a specified string of characters and optionally replace
it with a different string

Bookmarks Set, clear and move between markers set in the text

Find

This is selected from the ‘Edit’ menu. The following dialog box is
displayed:

Type the string of characters to be located in the ‘Find What:’ field.

If the entire string is to be matched select the following check box:

If the case of the string of characters is to be matched select the following
check box:

The direction of the search within the file can be specified using the
following radio buttons:

Locating and changing text Using the Editor

72 Micropak 75XL User Manual

Replace

This is selected from the ‘Edit’ menu. The following dialog box is
displayed:

Type the string of characters to be located in the ‘Find What:’ field. Type
the replacement string of characters in the ‘Replace With:’ field.

If the entire string is to be matched select the following check box:

If the case of the string of characters is to be matched select the following
check box:

To locate next instance of the string to be replaced click the following
button:

To replace the first occurrence of the character string click the following
button:

To replace all occurrences of the character string click the following
button:

.

Locating and changing text Using the Editor

Micropak 75XL User Manual 73

Bookmarks

To set a bookmark, position the text cursor on the line to be marked and
select ‘Toggle Bookmark’ from the ‘View’ menu. To subsequently
remove a bookmark first locate it and then select the same menu option.

To move to the next bookmark in the file select ‘Next Bookmark’ from the
‘View’ menu.

To move to the previous bookmark in the file select ‘Previous Bookmark’
from the ‘View’ menu.

Note that these menu options have corresponding ‘accelerator’ key
sequences.

To remove all bookmarks in the current file select ‘Clear All Bookmarks’
from the ‘View’ menu.

The implications of editing

When any relevant source areas are edited, the relationship between the
object and source is altered and the object file no longer corresponds
exactly to the source files. Therefore, the assembler or other relevant tool
should be re-invoked to re-build the object file from the source file.

Re-building the project Using the Editor

74 Micropak 75XL User Manual

Re-building the project

The assembler can be re-invoked to re-build the object file from the source
file either by selecting ‘Rebuild All’ from the ‘Project’ menu. There is
also a tools available on the tool bar for this command, i.e.:

‘Rebuild All Project’:

When the tool is re-invoked the re-build process will run and its output
will be displayed in the output window. This will include any errors
encountered by the tool chain including pre-processor errors, assembler
errors and linker errors.

When the process is complete the output window should be examined for
errors before continuing. On closing the output window, Micropak 75XL
will read the new source and object files and redraw the display.

Please note that the rebuilding process will operate on the disk stored
versions of the source files. If the editor has been used and the file not
stored a message will be displayed asking if you wish to continue with the
rebuild. To include the edited version of the file in the build you must
reply no to the message, store the edited version of the file on the disk and
then re-invoke the build.

The re-assembly mechanism

This mechanism relies on the project sequence file and a number of
related files being set up correctly, which is discussed in more detail in the
‘Navigating Project Files’ chapter of this user manual.

You should also ensure that the 75XL tool chain is correctly installed on
the machine and that a ‘DOS’ ‘PATH’ has been set so that the tools can
be located. Note that the ‘DOS’ ‘PATH’ must be set before ‘WINDOWS’
is invoked.

Correcting errors flagged by the assembler

Any errors found are flagged. There will be ‘Next’ and ‘Previous’ menu
items enabling you to locate each error, and double-clicking on an error in
the output window will take you to the appropriate line in the source file.

Controlling Execution Overview

Micropak 75XL User Manual 75

Controlling Execution

Overview

There are various ways in which the 75X code loaded into the simulated
system can be executed, such as single step, multi-step and so on. Before
describing each of these in detail let us consider some general aspects of
execution, such as how to stop the processor when it is running and the
factors which affect execution speed and how they can be optimised.

Ceasing execution

Execution can always be interrupted by pressing the appropriate function
key, selecting ‘Stop Debugging’ from the ‘Debug’ menu or clicking the
following tool bar icon:

Optimising execution speed

Updating view items on-screen slows the simulation, as do complex
breakpoints. To get the optimum execution speed you should restrict the
view items that are visible on-screen and reduce the number of active
breakpoints to a minimum.

The first of these options can be achieved by ‘minimising’ any windows
which are not currently being monitored by clicking the respective
minimise button:

Note that the source listing file may also be minimised.

Breakpoints can be reduced by disabling those which are not required for
the current test.

Execution possibilities Controlling Execution

76 Micropak 75XL User Manual

Execution possibilities

The code can be run in Micropak 75XL in the following way:

• Go (i.e. run until breakpoint is reached)

• Go and Go (report breakpoints but don’t stop)

• Step into

• Step over

• Step to cursor

• Step out

Tools for the following actions are available on the tool bar:

Go: Step into: Step over: Step to
cursor:

Step out:

Simple execution and debugging modes

This option allows execution to continue until a breakpoint is reached, or
until execution is halted. Two modes of operation are possible: ‘Slow’ and
‘Fast’. The mode is specified by selecting ‘Debug Options’ from the
‘Options’ menu. The following dialog box is displayed:

Select from ‘Slow’ or ‘Fast’ in the ‘Mode’ field of this dialog box.

Controlling Execution Execution possibilities

Micropak 75XL User Manual 77

‘Slow’ mode will show you multi-step animation of the code, updating all
windows and showing the progression of the PC through the listing
window after each instruction is executed. ‘Fast’ mode will only update
the test panels and the animated PC will not be shown.

The modes of operation may also be specified by clicking the mode icon
on the tool bar, which toggles between ‘Fast’ and ‘Slow’ modes:

‘Fast’ mode: ‘Slow’ mode:

Single stepping - Step into

Clicking the ‘Single step’ icon or pressing the appropriate function key
will cause the execution of the target code pointed to by the current PC.

Single stepping - Step over

This option, similar to ‘Step into’, will execute one instruction or all
instructions within a single procedure, if the statement pointed to by the
PC is a call to a procedure.

Step out

This will run to the first RET instruction which occurs with the stack at
the current level. This is provided as a fast way of running to the end of a
subroutine once the code in an area under investigation has been stepped
through. The stack level condition implies it will ignore any subroutine/
return combinations encountered on route.

Step to cursor

This allows the code to run until execution reaches the line in the source
listing window where the cursor is placed.

To use this function, first set the cursor by clicking within the desired line.
The function can then be invoked by pressing the appropriate function key
or clicking the ‘Step to cursor’ icon on the toolbar.

Go and Go

This facility is provided for batch testing. Here the code is run reporting
and updating the display as and when a breakpoint is reached.

Resetting and viewing the processor clock Controlling Execution

78 Micropak 75XL User Manual

Resetting and viewing the processor clock

The processor may be reset by selecting ‘Reset’ from the ‘Debug’ menu.
The following confirmation box will be displayed to ensure that the
processor is not reset accidentally:

A reset generated in this way will set the processor back to a clock value of
‘0’ and all the normal processor actions expected at reset will occur.

The processor clock may be viewed in a device window by selecting
‘Device’ from the ‘Window’ menu and choosing from the list.

The program counter

Micropak 75XL keeps control of execution through the program counter
(PC). This is updated whenever a statement is run.

The current position of the PC is seen in the source listing window as a
yellow bar. It can also be viewed by selecting ‘Device’ from the ‘Window’
menu and clicking the ‘Program Counter’ option. The following dialog
box will be displayed:

The PC can be set using this dialog box or by choosing ‘Set PC to cursor’
from the ‘Debug’ menu, which sets the PC to the ROM address currently
being pointed to by the cursor.

Controlling Execution The timing window

Micropak 75XL User Manual 79

The timing window

An interval window can be selected for display by selecting ‘Timing’ from
the ‘Window’ menu. The following dialog box is displayed:

The interval values will be incremented with each successive execution.
The interval value may be reset by selecting ‘Clear Timing Interval’ from
the ‘Trace’ menu.

Debug options

A number of user configurable options are available by choosing ‘Debug’
from the ‘Options’ menu. The following dialog box will be displayed:

Mode
Fast This run mode allows simulation execution at full

speed. Only the test panels are updated.

Slow When this run mode is selected all activated windows
will be updated after each instruction is executed.

Debug options Controlling Execution

80 Micropak 75XL User Manual

Signal window control
Signal Update(s) A value of simulated time in seconds may be input.

This value specifies the time interval between each
signal window update.

Increment(s) Again, a value of simulated time in seconds may be
input. This value will be used when there is no
activity in the system and the CPU is in either HALT
or STOP mode. In this instance the value will be used
to increment the clock and thus accelerate the
simulation.

Script file commands

This facility is provided to allow the simulator to trap script file loops.
Two parameters are used:

Maximum Here the user specifies the maximum number of script
instructions to be executed in a given time.

in-Time(s) The user specifies the time limit.

If the number of commands executed within the time specified reaches the
maximum specified a warning is given.

Trace buffer control
Enabler Check box for enabling or disabling trace buffering.

Size(s) The user can specify the size of the trace buffer which
is expressed as simulated time, in seconds.

Signal buffer control
Enabled Check box for enabling or disabling signal capture.

Size(s) The user can specify the size of the signal buffer which
is expressed as simulated time, in seconds.

Trace Buffering Controlling Tracing

Micropak 75XL User Manual 81

Trace Buffering

Micropak 75XL includes a trace buffer. This records the significant
aspects of the target system after each instruction has been executed.
When execution ceases (such as when a breakpoint has been encountered)
it can be used to show how control reached the current point.

Note that operating with trace buffer active requires Micropak 75XL to
store a significant volume of data after each instruction and consequently
slows execution speed considerably.

Controlling Tracing

Tracing can be activated by selecting ‘Debug’ from the ‘Options’ menu.
The following dialog box will be displayed:

Click the ‘Enabler’ check box to activate the trace facility:

You can also specify the depth of the trace buffer in seconds by typing a
value into the ‘Size’ field.

Trace buffer displays Trace Buffering

82 Micropak 75XL User Manual

Trace buffer displays

Once a set of execution history information has been captured in the trace
buffer, Micropak 75XL allows you to ‘roll-back’ the displays in order to
show the information captured. This effectively reverses the direction of
execution through the normal listing display.

For example, in this ‘roll-back’ display, single stepping causes the
previously executed line of code to be the active line rather than the
following line. The active line is shown in green.

Invoking roll-back displays

The following roll-back displays are available from the ‘Trace’ menu:

• Go back (i.e. back to start of last execution)

• Step back into

• Step back over

• Step out

• Step back to cursor

Rolling back is limited by trace buffer size

Because ‘roll-back’ displays operate by interpreting the path through the
code recorded in the trace buffer, the display can not be ‘rolled back’ to
instructions executed earlier than the oldest recorded record in the trace
buffer. Once the beginning of the buffer is reached a message will be
displayed.

In practice the size of the trace buffer is limited and this implies a limit on
how far the trace buffer can be ‘rolled back’.

The depth of the trace buffer is specified on the ‘Debug Options’ dialog
box, accessible from the ‘Options’ menu.

Stepping forward through the buffer

When execution has been rolled back, it is then possible to step forward
again through the buffer until the end of the buffer is reached.

Trace Buffering Restarting execution

Micropak 75XL User Manual 83

Any one of the options on the ‘Debug’ menu for controlling execution may
be used for this task. The PC bar will continue to be shown in green
whilst the buffer is being traversed. Once the end of the buffer has been
reached a message will be displayed and the PC bar will revert to yellow.

Restarting execution

In order to restart real execution the trace buffer display must be at the end
position. If the trace buffer is not at the end position you should issue a
‘Go’ command to step through the buffer to the end and then instigate the
required execution.

Inactive trace buffer

If the trace buffer is inactive, no roll back will be possible. Under these
conditions the menu and toll bar items associated with rolling back
through the trace buffer information will be ‘greyed out’.

Inactive trace buffer Trace Buffering

84 Micropak 75XL User Manual

Breakpoints Setting breakpoints

Micropak 75XL User Manual 85

Breakpoints

Setting breakpoints

Selecting the ‘Breakpoints’ option from the ‘Debug’ menu will cause the
following dialog box to be displayed:

This dialog box is used to add, remove, enable or disable breakpoints.

Breakpoints in Micropak 75XL are based on the idea of the value of an
item (or ‘variable’) in the simulated system matching, according to a
known relationship (or ‘relation’) a nominated value (or ‘constant’). This
can be thought of as BOOLEAN expression - if the expression evaluates to
true the breakpoint condition has occurred, and if false, it has not.

The fields in the upper part of the dialog box aid the construction of
suitable breakpoint definitions, whilst the lower section of the window
shows a list of currently defined breakpoints in a shorthand form.

Setting breakpoints Breakpoints

86 Micropak 75XL User Manual

The first example shown in the dialog box is of a breakpoint set on a
single ROM instruction to be met after one occurrence. In more detail the
elements are:

Element Explanation

+ Breakpoint enabled (disabled breakpoints are shown with ‘-’).
This can be controlled directly using a dialog box button. It is
also controlled automatically by Micropak 75XL when
expression breakpoints are in operation.

0/1 Breakpoint will be reached after one occurrence. This is input
by the user in the ‘Counter’ box.

PC This is the type of the breakpoint. Here ROM locations will be
monitored. The user selects the type from the Type box.

=
Stepper:Start

The location condition specified is shown. For location
breakpoints the condition is that the PC reaches a given
location. In this case the PC must equal the location address of
the symbol. The relation can be selected using the Relation
box and a symbolic or absolute address may be specified using
the ‘Value’ boxes in the ‘Constant’ section. Note that for
location breakpoints the only possibility in the ‘Variable’
section is the PC. For RAM variable breakpoints symbolic or
absolute RAM addresses may be given. The symbol names are
displayed through selection lists. ‘Stepper’ is the name of the
module, and only symbols within that module will be shown
in the selection lists. Module names can be chosen from a
selection list available through the ‘Module’ box.

The second example in the dialog box shows a break expression rather
than a breakpoint itself and the third example shows the use of the break
expression within a breakpoint.

Break expressions for either PC conditions or RAM conditions. The break
type PC expression or RAM expression is selected to specify an expression
condition.

Breakpoints Setting breakpoints

Micropak 75XL User Manual 87

In more detail the elements of the second example are:

Element Explanation

two: Break expression identity. This name will identify the
condition and is entered into the Identifier box

Stepper:Count
:2 = 4

The RAM condition required. Here we are specifying that the
RAM location Count which is specified as 2 locations in
length and is defined in the Stepper module should reach the
value 4.

The elements of the third example are as in the first example with the
addition of an expression:

Element Explanation

PC =
Stepper:Phase
one & (two)

A PC breakpoint has been specified to examine the expression
‘two’ when the location PHASEOTE in the STEPPER module
is reached. The expression ‘two’ was defined in the second
example. The breakpoint will be triggered if this expression if
found to be true. The expression ‘two’ is specified in the
Expression box

Further details of the possibilities allowed in each box are given in the
following sections.

Types of breakpoints Breakpoints

88 Micropak 75XL User Manual

Types of breakpoints

This type selection list shows the following possibilities:

:

Break at ROM locations

Micropak 75XL allows execution breakpoints to be set on memory
locations as specified in the ‘Constant’ fields of the dialog box. If the
absolute check box is set then an absolute address must be given,
otherwise a symbolic address may be given. The ‘Relation’ box may be
used to specify a single address or a range of addresses for the condition.

Break on RAM conditions

Micropak 75XL allows break conditions to be set on RAM locations. The
RAM location is specified in the ‘Variable’ fields of the dialog box. The
location may be specified symbolically or as an absolute address. The
length of the RAM area to be monitored may be specified in the length
box. If an absolute address is given the type of the RAM area can also be
specified using the variable type box:.

The type of the breakpoint specifies the RAM action to be monitored ie,
RAM reads, writes, modifications. It is also possible to specify a constant
value which must be encountered in order for the break condition to be
satisfied. This value is entered in the ‘Constant’ fields. to be monitored by
the breakpoint during the expression then evaluates to a non-zero value
then the breakpoint is considered to have been reached.

Breakpoints Expression breakpoints

Micropak 75XL User Manual 89

Expression breakpoints

Expression breakpoints allow the user to combine separately specified PC
and RAM break conditions. These conditions are specified using the type
PC expression and RAM expression respectively.

Each break condition is allocated an identity which must be entered into
the identity box. This identity may be used to specify a condition to be
examined when a breakpoint is reached. The breakpoint will then only be
triggered if the expression evaluates to true. The expression box is used to
specify the condition or conditions to be examined.

Simple conditions are specified by simply entering a break condition
identity in the expression box. Break conditions may be combined by
specifying break condition identities and using the following logical
operators to combine them:

’& (AND)

‘|’ (OR)

‘!’ (NOT)

The third example given in the diagram here shows a PC breakpoint
which will only be triggered if the expression identified as ‘two’ evaluates
to true. I.e. that the value of the RAM location COUNT is 4.

The ‘Counter’ field Breakpoints

90 Micropak 75XL User Manual

Note that it is not possible to delete individual break conditions until they
have been removed from all expression breakpoints.

The ‘Counter’ field

This edit box is used to specify the number of times that the breakpoint is
to be met before it is considered to have the default value is ‘1’.

The ‘Relation’ field

This edit box is used to specify the relationship required between the
‘Variable’ field items specified and the ‘Constant’ field items specified.
The following relations are possible:

The user should select ‘=‘ if for example he wishes the condition to be met
when the PC meets a particular ROM address and ‘>‘ if he wishes the
condition to be met when the PC is greater than the given ROM address.

Breakpoints Breakpoint example

Micropak 75XL User Manual 91

Breakpoint example

The steps necessary to set a breakpoint are summarised by the following
example.

• Select the type of breakpoint required from the ‘Type’ box.

• If the breakpoint is a RAM type then define the RAM location using
the ‘Variable’ fields.

• If the user is specifying locations symbolically it may be necessary to
select the correct module for the symbols using the ‘Module’ box.

• Use the ‘Constant’ fields to specify the address or value required in
order for the break condition to be met. Also select the correct relation
required.

• If the an expression condition is being specified enter a name into the
identity box to identify the condition.

• Use the expression box to enter any break condition identities to be
monitored.

• Ensure that the ‘Count’ box is showing the correct number of
occurrences of the condition to be found before the break will occur.

• Finally press the Add button on the dialog box to set the condition.

Viewing current breakpoints set ups

The ‘Breakpoints’ dialog box shows a list of current breakpoints and their
status. This list is scrollable and one can see all breakpoints set. Clicking
on any one of the breakpoints displayed will transfer all the details to the
fields in the upper part of the window enabling the detail of the breakpoint
to be easily checked

Setting breakpoints in the listing window

Execution breakpoints on a single address may be set directly when
displaying the source listing window. This may be achieved by moving
the cursor to the required line in the window and clicking the ‘Toggle
Breakpoint’ icon to set the breakpoint.

Removing breakpoints Breakpoints

92 Micropak 75XL User Manual

Set a breakpoint by using this icon

The source listing window will show the line on which the breakpoint is
set in red. Note that the F10 key may also be used for this function.

Removing breakpoints

To remove a breakpoint or break condition, the dialog box should be
activated and the breakpoint to be removed selected from the list. On
selection the details of the breakpoint will be transferred to the individual
boxes so that the user can verify his selection. The ‘Delete’ button in the
dialog box should then be clicked and the breakpoint details will be
removed from the list.

For single location breakpoints which can be seen in red in the listing
window, the ‘Breakpoint’ icon can be clicked. If the cursor is positioned
on the breakpoint and the button clicked the breakpoint will be removed.

Please note that it will not be possible to delete a break condition if it is
being used in an expression.

Enabling/disabling breakpoints

Individual breakpoints may be temporarily disabled and then re-enabled at
any time using the dialog box. The required breakpoint should be selected
and the ‘Disable/Enable’ button clicked accordingly. The current status of
each breakpoint is denoted by ‘+’ (enabled) or ‘-’ (disabled) in the
breakpoint listing box.

Please note that break conditions used within expressions cannot be
disabled or enabled.

Breakpoints Script file facilities

Micropak 75XL User Manual 93

Script file facilities

Actions in script files can be controlled and triggered either by event
triggers or by script file breakpoints.

Breakpoints may be set to correspond with breakpoints set within the
simulation. The script language contains a ‘breakpoint’ function which
allows the user to specify each of the breakpoint conditions described
above.

Further event triggers can be specified during the script language ‘add’
command. Here, triggers can be set to cause an event on:

• Test panel input

• Port activity

• Time-out

When a script file breakpoint or event trigger is reached the action routine
referred to will be triggered and execution of the target code suspended
until the actions have been processed.

Script file facilities Breakpoints

94 Micropak 75XL User Manual

Port Simulation Techniques Overview

Micropak 75XL User Manual 95

Port Simulation Techniques

Overview

The simulation includes, for each port line, an internal and an external
‘Thevenin’ equivalent network, each of which consists of a single voltage
generator and a single series resistance. The internal network is provided
and controlled by the simulation in accordance with the internally set port
controlling conditions such as the state of the port data registers, etc.

For the external network both the voltage and series resistance can be
controlled via the user interface or the script file.

Extending the simulation in this way allows the interaction of the
firmware under test with external hardware elements such as switches,
LEDs, etc., to be investigated, allows checks on the drive capabilities of
the ports and the use of pull-ups, etc.

Pin and port windows

The Micropak 75XL simulation includes all the significant pins of the
target processor. It is possible to invoke a device window for any
additional pin. In addition, it is possible to show summaries of the pin
information grouped as ports. These port views show the logical values at
the port:

.Grouped pin information for a port

Both pin and port views can be updated by overtyping the displayed fields.

Overview Port Simulation Techniques

96 Micropak 75XL User Manual

An external voltage/resistance network for every pin

An internal voltage/resistance network is simulated for every pin. The
internal ‘Thevenin’ network is automatically controlled by the simulation
and consists of a single resistance and a single voltage source.

The voltage and the resistance values are specified by the user and can be
changed if desired whilst the target code is running. Furthermore, the
network may also be connected or disconnected from the pin by toggling
the ‘connect’ box in the pin window. :

A network is provided for each pin

Assumed port characteristics

The assumed characteristics of the port hardware are as follows:

Item Assumed value
Pull-up value 40k ohms

Top CMOS
driver

1000 ohms

Bottom CMOS
driver

133 ohms

Port Simulation Techniques Using script files to control port conditions

Micropak 75XL User Manual 97

Using these networks

Including a simulation of these simple internal and external networks for
each pin allows checks on the behaviour of the internal port hardware.

Consider, as an example, a case in which a particular port line was
intended in a design to be used as a permanent input, sensing the value
being fed to it by a standard CMOS buffer. In this case it would be
sensible to mimic the external CMOS buffer driver by setting the
resistance value to the output impedance of the buffer (say 100 ohms) and
then specifying the data conditions into the pin by setting the voltage of
the voltage generator to VCC or 0 (for login ‘1’ or ‘0’ respectively).

Using the simulated network in this way allows the firmware under test to
check the programming of the port. Assuming that the port line was
correctly programmed as an input, the voltage at the port input would
follow closely the rail to rail changes made in the voltage generator
setting. However, if there was a bug in the firmware under test, such that
the internal NMOS buffer on this line was inadvertently activated, the
voltage shown for the pin would deviate significantly from the expected
values, highlighting the drive contention and drawing attention to the bug.

Using script files to control port conditions

Script files can be used to set port conditions using the statements:

connect, setr and setv

Each of these statements are described below:

connect <pin>,<on/off>

This connects or disconnects the external network, depending on the
single parameter given (0 = disconnect, non-zero = connect).
Disconnection is similar in effect to setting the series resistance to an
infinite value.

setr <pin>,<resistance>

The setr statement takes two parameters, the first defining the pin and the
second the series resistance directly in ohms.

Using script files to check port conditions Port Simulation Techniques

98 Micropak 75XL User Manual

setv <pin>,<volts>

This statement controls the external voltage generator associated with the
pin, using a parameter which defines the desired value directly in volts.

Here is an example sequence of statements which would connect an
external voltage source of 3.6 volts to pin port 1.1 via a series resistance of
47 k ohms:

setv 43,3.6 : rem 3.6 volts

setr 43,47000 : rem via a 47 k R

connect 43,1 : rem connect the external network

Note that the script file facilities provide a flexible mechanism which
allows the parameters of the network to be changed intelligently to
provide, for example, sinusoidal input voltages or switched loads or pull-
ups.

Using script files to check port conditions

The current voltage at any pin is available to script file programs via the
getv expression:

getv(<pin>)

This takes the port pin number as a single parameter and returns the pin
voltage in volts.

Thus, for example, if the pin were to be used to drive a CMOS gate, which
was regarded as having a fixed login threshold of 2.1 volts, the script file
could derive the effective logic value as follows:

let CMOS_VALUE=(getv(43) >= 2.1)

For more details on using script files, see the associated section.

Pin numbering

The pin numbers used in these script statements correspond to the real pin
numbers on the standard package for the simulated device.

Port Simulation Techniques Pull-up control and mask options

Micropak 75XL User Manual 99

Pull-up control and mask options

Micropak 75XL will look for pull-up controlling mask option statements
when it reads in any listing files. If such statements are detected,
Micropak 75XL will use this information to set the appropriate states of
the simulated port pull-ups.

These are shown in the pin windows and can be changed there if desired.
Note, however, that these values will be re-initialised whenever the
associated mask option statements are read from the listing files and
therefore any manually entered changes will not survive the file reload
that occurs when a project is loaded or re-built. You should therefore
ensure that the mask option statements in the source files set the mask
options appropriately.

Pull-up control and mask options Port Simulation Techniques

100 Micropak 75XL User Manual

Viewing Simulated Objects Overview

Micropak 75XL User Manual 101

Viewing Simulated Objects

Overview

Micropak 75XL provides a number of device windows which allows the
states and activities of simulated objects to be viewed and monitored.
These windows are updated whilst the simulation is running in slow mode
or at the end of execution if running in fast mode. Micropak 75XL also
provides ‘Test Panel’ facilities to enable users to customise the way in
which they wish to view items.

Displaying RAM

The Data Memory window

The basic memory view facility is composed of an array of values held in a
Data Memory window. It is displayed by selecting ‘Device’ from the
‘Window’ menu then choosing ‘Data Memory’ from the list. The
following window will be displayed

Displaying RAM Viewing Simulated Objects

102 Micropak 75XL User Manual

The window may be sized to include the RAM addresses required. Where
the RAM addresses are not consecutive, this can be accommodated by
opening multiple windows.

Customised memory views.

Test panel windows can be used to show customised views of memory
locations. These panels provide a good ‘application’ view of memory, as
they allow location data to be output in a form specified by the user as
applicable for the task. RAM may be displayed directly or may, for
example, be shown translated into text as decimal numbers to mimic an
application display. Further information about test panels is given later in
this section.

Viewing Simulated Objects Signal recording windows

Micropak 75XL User Manual 103

Signal recording windows

What is a signal recording window?

Micropak 75XL allows display of pin values and data items as time-based
plots. These are shown in ‘signal recording windows’ and resemble
oscilloscope traces. Here is an example:

Signal recording windows Viewing Simulated Objects

104 Micropak 75XL User Manual

Setting up a signal window

To set up a signal window you must first select ‘New Signal’ from the
‘Trace’ menu. An empty signal window will be displayed. Items to be
plotted in the window can then be added by selecting ‘Edit Signals’ from
the ‘Trace’ menu.

The following dialog box is displayed:

Type

Signals can be plotted for pins or data memory. The selection can be made
through the type box.

Pin selection

The pins to be included within any one signal window can be selected
from a list of valid pins. This list will be activated only if the pin type has
be selected.

Viewing Simulated Objects Signal recording windows

Micropak 75XL User Manual 105

Memory selection

Data items or bits may be selected from the memory type box. Symbolic
names may be given for data locations. These may be chosen from a
selection list. A module name selection list allows the user to specify the
module in which relevant symbols are declared. Alternatively an absolute
address may be given. Bit addresses should be given with a period
separating the address and the bit number eg 70.1. If a length is specified
for a data item the value plotted will then be taken from the whole
memory range.

The signal list

Once an item selection has been made, clicking the ‘Add’ button will
cause the itme to be listed in the ‘Signals’ list. One plot line will be
included within the window for every item shown in the ‘Signals’ list.

Axes and scales

The scale of both the X and Y axes for the signal plot can be set by the
user. The X axis is scaled in pixels per second and the Y axis in pixels
per volt. Minimum and maximum values can also be specified for the Y
axis, in volts.

Pin Options

Three check boxes are provided so that the user can specify marker lines
they wish to be included in the signal window for pin plots. The following
options are available:

(Vdd + GND)/2 This is set at the cross-over point
between logical values 0 and 1.

GND This is set at the ground voltage.

Vdd This is set at the power supply voltage.

Signal recording windows Viewing Simulated Objects

106 Micropak 75XL User Manual

Other Options

Two check boxes are provided for users to specifiy options they wish to
include on pin and memory signals. These are as follows:-

0 line A marker line is set at zero volts.

Shade signals Shading between the baseline and the
plot line is included

Removing plot lines

Individual plot lines can be removed from the window by selecting the
signal from the ‘Signals’ list and then clicking the ‘Delete’ button. To
remove all plot lines click the ‘Clear All’ button.

Enabling/disabling plot lines

Individual plot lines can be temporarily disabled and then re-enabled.
This is achieved by selecting the plot line from the ‘Signals’ list then
clicking the ‘Enable’ or ‘Disable’ buttons as appropriate.

The signal buffer must be enabled

The signal window will only be updated with information once the target
code has been executed, so initially the window will be devoid of signal
information. Furthermore, as updating the signal window slows the
execution speed, a check box is provided on the ‘Debug Options’ window
(displayed by selecting ‘Debug’ from the ‘Options’ menu) allowing you to
enable/disable the signal buffer:

Viewing Simulated Objects Signal recording windows

Micropak 75XL User Manual 107

 Note that this dialog box also allows you to specify the size of the signal
buffer which can hold historical information about the plots and the
frequency of the window updating. Further details on this are given in the
section on Debug options.

Viewing the results - zooming and snapping

Once the signal information has been generated the window will be
updated with the results. The window is scrollable so that the historical
information held in the signal buffer can be viewed.

You can also use the ‘Signal Zoom In’ option from the ‘Trace’ menu to
obtain a more detailed look at any specific part of the signal generated. A
‘Signal Zoom Out’ menu option is also provided if only an overview is
required.

Each time ‘Signal Zoom In’ or ‘Signal Zoom Out’ are selected the scale of
the display is changed by a factor of two. The maximum and minimum
scales are one million pixels per second and one pixel per second. The
size of the signal buffer is not linked to this scale. If a scale is selected in
which part of the display exceeds the size of the buffer, a blank signal will
result.

On-chip peripherals Viewing Simulated Objects

108 Micropak 75XL User Manual

If you choose ‘Snap Signals’, the signal window display will show the
nearest point at which the value of the item changed. Note that this may
be a postion either forward or backward in the signal buffer.

On-chip peripherals

All significant on-chip peripherals have associated view boxes. These can
be viewed by selecting ‘Device’ from the ‘Window’ which displays a list
of all valid devices for the chosen processor, e.g.:

.Double-clicking a entry in the list displays the selected device
window,e.g.:

Viewing Simulated Objects Port views

Micropak 75XL User Manual 109

The device window shows, in information fields, all state and numerical
information relevant to the device. The fields within the device window
can be overtyped or changed using selection list options if specific
conditions are required. If necessary, this can be done whilst the
simulation is running.

The types of devices available and the details associated with each are
processor dependent. Therefore, the data sheets for the particular
processor being used should be consulted for the relevant information
about the devices and their constituent parts.

Port views

Port lines may be viewed individually as pins or in summary as a port
window.

A port line is selected by double-clicking from the list displayed when the
‘Pin’ option is chosen from the ‘Window’ menu. The pin window shows
the effective voltage on the pin and allows the specification of an external
network to be connected to the pin.

To display a complete port, select ‘Device’ from the ‘Window’ menu then
double-click the required device from the list, e.g.:

Port views give the pin values of each individual pin.

The chapter on ‘Port simulation techniques’ givers further information.

Test panel displays Viewing Simulated Objects

110 Micropak 75XL User Manual

Test panel displays

What are test panels?

Test panel displays allow you to draw together a set of items, all related to
a particular test set-up, to form a display which is particularly convenient
for the tests to be carried out.

The display can be set up to show the states and contents of items such as
port conditions, memory states and script file variables. It provides users
with a convenient ‘front panel’ through which tests can be controlled and
their results monitored. An example is shown below:

Test panels allow compact views to be built up which keep related objects
together in the display. They allow, for example, the states of the port
lines associated with the keys in a key scanning routine to be displayed in
a format which can accept key presses.

The resulting input facilities and display can be particularly clear and
convenient when debugging, for example, the key scanning module of an
application.

Viewing Simulated Objects Test panel displays

Micropak 75XL User Manual 111

Test panel options

Options available from the ‘File’ menu and ‘Test’ menu allow test panels
to be created and edited.

Menu Panel Option

Test New Panel. Select this option to create a new panel.

File Open. Select this option to open an existing panel.

Test Show Panel Palette. This option is available when a
panel is open and displays the palette window.

Test Panel Properties. Select this option to specify or
change the properties associated with an item.

Test Panel Grid Settings. Use this option to change the
grid settings for the panel and turn ‘snap to grid’ on or
off.

Items in each panel can be added to the panel and subsequently moved,
edited or deleted. Each item has a set of properties associated with it (e.g.
a caption to describe the item). These properties can be changed by
selecting the ‘Panel Properties’ option from the ‘Test’ menu. To aid the
user when aligning items in panels a grid is displayed. The ‘Grid
Settings’ dialog box, displayed when the ‘Panel Grid Settings’ option is
chosen from the ‘Test’ menu, can be used to turn the grid on or off.

Test panel displays Viewing Simulated Objects

112 Micropak 75XL User Manual

Setting up a test panel

To set up a test panel select ‘New Panel’ from the ‘Test’ menu. An empty
panel window will appear, e.g.:

Items can then be added to the panel using the palette: window,e.g.:

The tasks allowed using the palette are described below:

Move

This option allows defined items to be moved in the test panel using the
mouse. Also, if a double-click is performed when the mouse is positioned
on an item, the ‘Properties’ dialog box for that item will be displayed.

Flag

The ‘Flag’ option specifies a test panel flag item which can take one of
two values (‘0’ or ‘1’). The condition of the flag will be shown in inverse
video (i.e. active) if it has the value ‘1’. The state of the flag is controlled
by events in the script file and can, for example, be set to represent the
state of a port line.

Viewing Simulated Objects Test panel displays

Micropak 75XL User Manual 113

Button

The ‘Button’ option allows button event inputs to be entered by the user.
The buttons are displayed in normal video and the mouse may be used to
click on the button. The displayed button will then be set to show its
‘pushed’ state. When the button is released, an event associated with the
button press will then be generated. This mechanism allows users to
control events in script files. For example, a button event may be used to
trigger a script file event which will set the conditions required for a
simulated real button press in the hardware.

Text box

This option allows text to be displayed in a test panel. This enables the
user to annotate test panels, making testing easier.

Edit box

This option allows text to be entered into the test panel and text output to
be shown in the test panel. This mechanism allows the user to input text
and numbers which may be required to trigger events in the script file.
Output generated by events occurring in the firmware may also be shown,
for example, displaying the contents of RAM when a breakpoint is
reached in the firmware. The script file can be set up to monitor the
breakpoint and trigger an event which will display the required locations
when this occurs.

Properties

Each item in a test panel has a number of properties associated with it,
which may be specified or changed using the ‘Panel Properties’ menu
option or by double-clicking on the item after the ‘Move’ option in the test
panel edit palette has been selected. The properties which can be specified
are given below:

Test panel displays Viewing Simulated Objects

114 Micropak 75XL User Manual

Property Meaning

Identity The ‘Identity’ property allows the item to be linked to statements
given in the script file. For example, the script file will use the
‘Identity’ to test panel flag values when actioning events.

Caption The item ‘Caption’ allows the user to give the item a caption
which is displayed in the test panel.

Source Debugging Overview

Micropak 75XL User Manual 115

Source Debugging

Overview

Source level debugging facilities are provided by Micropak MP75XL. The
source code is shown during execution in the source window and the PC
bar (shown in yellow) tracks the progress of execution through the source.
This source is displayed directly from the source assembler files.

Source held in files input to the structured assembler and macro-processor
pre-processor utilities is not shown directly. The structured assembler code
is however shown in the associated source file in comments, and the
macro source is shown in its expanded form.

 There are several facilities provided by Micropak 75XL to aid source
debugging. These facilities are as follows:

• QuickWatch. Displays snapshot information about a selected
object or structure.

• Watch. Displays constantly updated information about objects.

• Stack. Displays the stack contents and provides stack
monitoring

• Registers. Displays constantly updated register contents.

With the exception of ‘QuickWatch’ any combination of these functions
may be run simultaneously in a test environment. Each of these facilities
is described in this section.

VENT0 statement

In order for the source level debbugging facility to work correctly it is
essential that the VENT0 directive is given in the source. This directive is
used by the listing converter in the 75X tool chain when generating the
debugging information required. The directive MUST be preceded by
eight spaces and NOT A TAB in the source file. Furthermore it MUST
be entered in uppercase.

NAME pseudo mnemonic Source Debugging

116 Micropak 75XL User Manual

NAME pseudo mnemonic

The MP75XL assembler allows you to use a NAME pseudo mnemonic to
specify the name of the source file. If you use this facility please ensure
that the name you give matches the actual name of the source file but
without the extension. This will enable MP75XL to locate the symbolic
information correctly. Note: A warning is given during redbuild if a mis-
match is found.

Source Windows

MP75XL allows you to open one or more views of the source code you are
debugging. This allows you to watch the progress of execution through
different parts of you code and also allows you to edit the code held in
different modules directly.

Whenever code is exeucting in ‘Slow Mode’ the yellow PC bar will track
the execution of code in a source window. The PC bar will move between
any open source windows. If a new window is required to show the PC
bar, MP75XL will automatically open it and display it on top of the
previously activated source window.

The current window focus may be set by the user either into a source
window or into any of the non-source windows. If the focus is set in a
source window, MP75XL will automatically change the current window
focus between open source windows so that the focus or active source
window is changed when the PC changes. If the focus is not set in a source
window, the focus will not be changed. MP75XL will however place the
source window currently showing the PC on the top of any ‘Z’ ordered
source windows open, so that the user may view the currently executing
source.

You may edit any of the source windows, however please note that
changes to the source code will not become effective until a project rebuild
is made.

Source Debugging QuickWatch

Micropak 75XL User Manual 117

QuickWatch

The purpose of the ‘QuickWatch’ facility is to enable you to quickly
inspect a variable or type. This is achieved by moving the cursor into the
variable name to be interrogated then selecting ‘QuickWatch’ from the
‘Debug’ menu or clicking the ‘QuickWatch’ tool bar icon: :

When selected, a window displaying information about the selected item is
displayed:

All data symbols loaded into Micropak 75XL have a length of 1 regardless
of the length declared in the source file. Thus if you wish to view a symbol
of length greater than 1, you must change the length box.

The current value of the variable is shown and this may be changed by
entering a new value in the ‘New’ box. The base of the variable may be
selected .

If you wish to subsequently monitor an item on an ongoing basis, the ‘Add
to Watch’ button may be clicked to transfer the item to the ‘Watch’
window and simultaneously close the ‘QuickWatch’ window.

Note that the variable being inspected must be in scope.

Watch Source Debugging

118 Micropak 75XL User Manual

Watch

This facility allows the ongoing viewing of items while they are being
constantly updated by the executing program. It is selected by either
choosing ‘Watch’ from the ‘Window’ menu or by clicking the ‘Add to
Watch’ button from the ‘QuickWatch’ menu.

In either case a window similar to the following is displayed:

Any items transferred from the ‘QuickWatch’ facility will be displayed at
the top of this window. Note that the full data item name is given, ie the
module name followed by the variable name. The length of the item is also
given. This is shown separated from the name by a point.

Adding items to the ‘Watch’ window

Further items can be added to the ‘Watch’ window in one of three ways:

• By transferring other items from ‘QuickWatch’ windows.

• By typing the name of the item to be monitored.

• By using the Add to Watch menu option

The second method is accomplished by clicking the edit cursor into the
next empty line on the ‘Watch’ window (i.e. either the first line of the
display area or the blank line below the last item already displayed) and
typing in the variable name required followed by the ‘Enter’ key. The text
is checked and if it is a valid item, the value is displayed and updated
accordingly. If the item is invalid the text ‘<undefined>‘ will be displayed
adjacent to it.

Source Debugging Watch

Micropak 75XL User Manual 119

 The module name and variable name entered should be separated by a
colon. If no module name is given, then the module name of the code
currently being executed, ie ‘in-scope’, will be assumed. If the variable is
not defined in the ‘in-scope’ module, the symbols will be searched for a
matching variable irrespective of the module name.

If no length is given then a default length of 1 is assumed. The length of
the data item to be viewed should be entered in decimal separated from the
name by a full point character.

The third method of entering data into the ‘Watch Window’ is
accomplished by invoking the ‘Add to Watch’ option from the ‘Debug’
menu. The following dialog box is displayed:

Here items can be selected by choosing module names and symbol names
from selection lists. The length of the item can also be specified as can the
base to be used for the display of the contents.

Stack contents

The stack pointer window may be selected from the list of devices shown
from the Device option of the Window menu. This window displays not
only the current value of the stack pointer but also the current stack
contents.

Watch Source Debugging

120 Micropak 75XL User Manual

When selected a window similar to the following is displayed:

The symbols STACKTOP and STACKSIZE must be declared in the
program source for this window to function correctly. The symbol
STACKTOP should be set with the initial value loaded into the stack
pointer and STACKSIZE should be set to the size of the memory area to
be allocated to the stack. The stack contents will always display the last
value entered on the stack as the bottom line in the window.

Micropak 75XL checks the bounds of the stack throughout the program
execution and an error box will be displayed if the stack underflows or
overflows the bounds set.

You are able to change the contents of the stack by selecting the address to
be changed and double-clicking the mouse on the selected item. A dialog
box similar to the following will be displayed:

Source Debugging Registers

Micropak 75XL User Manual 121

Registers

The contents of the registers can be monitored by selecting ‘Registers’
from the ‘Window’ menu. A window similar to the following is
displayed:

The register values may be changed by overtyping the displayed register
contents. Please note that the register names themselves are shown in
green indicating that these items may not be changed.

Registers Source Debugging

122 Micropak 75XL User Manual

Using Script Files Overview

Micropak 75XL User Manual 123

Using Script Files

Overview

Micropak 75XL can process sets of commands contained in script files.
These commands can set or check conditions in the simulated system and
can be used to run tests automatically or to mimic the behaviour of
external hardware.

The command format resembles a simple high level language such as
BASIC. The functions which are provided are chosen to simplify the
selection of predefined tests or the simulation of external events or items.

Test panels may be used both to display the results of the script processing
events and pass input, via user action, to the script processing function.

Script files - Purpose and uses

Script files allow users to extend and customise the simulation facilities
and in particular to:

• Extend the simulation by providing automatic handling of
external events. The script file facilities allow the behaviour of
external hardware and other devices to be simulated
automatically.

• Set up semi-automatic control of testing sessions. This allows
the running of repetitive or regression tests semi-automatically,
by setting up RAM data, running code sessions and checking
results.

Test panels and their relation to script files

Test panels are used to provide a user defined, and application specific,
user interface to the program under test via script files facilities. They
allow, for example, port lines to be controlled by simple ‘point and shoot’
actions whilst the target code is running.

Script files - Purpose and uses Using Script Files

124 Micropak 75XL User Manual

Examples of script file and test panel uses

The flexibility and power of the script panel and test panel combinations
allow them to be used in many differing ways, for example:

• Simulating the relationship between triac devices and a delayed
thermistor reading in a heater control application, using test
panels to display the drive, critical temperatures and effective
power applied. Script files could be used to model the changes
in performance and relations between the peripheral elements
associated with a range of mains voltages or thermal
characteristics. They could also show the average main voltage
at switching points - allowing the accuracy of zero-cross
switching algorithms to be assessed.

• Simulating a DC motor. The script file could be used to relate
acceleration to drive signals and relate speed to back-emf, etc.,
building up to an accurate model of a physical motor.

• Simulating custom LCDs with simple test pattern flags.

• Modelling membrane keypads or other switch inputs, including
switch bounce and other non-ideal characteristics.

• Generating serial bit streams such as asynchronous data at
differing baud rates to test firmware implemented UART
decoding.

• Simulating the performance of firmware implemented ADCs by
modelling the functions of external comparators/ RC networks,
etc.

• Checking zero cross timing handling by generating a range of
waveforms or mixtures of waveforms on the associated pins, etc.

• Modelling the known characteristics of real sensors (such as
pulse generating flow sensors). Test panels would allow the
user to set and display flow rates, whilst the script files could
convert this to a pulse train at an appropriate frequency.

• Simulating inertia of stepper motors, therefore detecting
conditions where the firmware ramps the drive speed too
quickly.

Using Script Files The script language

Micropak 75XL User Manual 125

It can be seen that the applicability of the test panel and script file
combination is very wide ranging. It is particularly advantageous in that
extensive testing can be performed in the simulated environment before
any hardware is ready, or when the consequence of generating incorrect
control signals in the real environment would be undesirable. The
environment is also very suitable for theoretical and repeatable testing,
allowing, for example, one control algorithm to be tested against another
in standard conditions.

Module testing is an activity for which the simulated environment is ideal,
allowing data tests to be set up easily, and run semi-automatically under
the control of an appropriate test panel.

The script language

The grammar and syntax

Here is a summary of the main features of the script file grammar and
syntax. For a full, formal definition in modified Backus-Naur form, see
the script file syntax shown as an Appendix.

Here is an informed, narrative description of the grammar and syntax:

Statements and lines

Script files are made up of statements.

• Statements must end with a terminator which can be either a
normal end of line (i.e. line feed or carriage return/line feed
pair), or a colon character, ‘:’

• Null statements (such as blank lines) are allowed

• Most statements follow a simple logical format, which is very
similar to BASIC

Here is an example of a single line statement:

let SignalVolts = sin (TimeBase)

The script language Using Script Files

126 Micropak 75XL User Manual

Here is another example showing two statements on a single line,
separated by the ‘:’ character:

let A = B + C : let D = D * E

Elements of script file statements

Script statements are composed from a number of different elements.
These are as follows:

Keywords Identify statement types (such as ‘if’, ‘poke’, ‘goto’,
etc.), built-in functions (such as ‘sin’, ‘cos’, ‘atan’,
etc.) and qualifiers (such as ‘button’, ‘pin’, ‘edit’).

Variables Identify user data variables. Examples include
‘MyVar’, ‘SignalVolts’, ‘timebase’ and
‘StartButtonId$’. Variables can be integers, real or
strings.

Operators These allow variables and functions to be combined
where necessary to form expressions, such as ‘Scale *
cos (timebase)’, where the ‘*’ is the multiplication
operator.

These elements are described in more detail in the sections which follow.

Note on comment delimiters

The ‘rem’ statement allows the insertion of comments. Because it is
statement it must be preceded by a terminator to separate it from any other
preceding statements on the same line.

The apostrophe character, ’, can be used anywhere on a line to introduce a
comment and does not need a preceding terminator.

In both cases the comment is considered to last until the next end of line
and comments can therefore include ‘:’ characters.

Using Script Files Script file variables

Micropak 75XL User Manual 127

Script file variables

Internal script file variables are required in order to control and action
events. The table below lists the type of variables available:

Type Description

Integer Holds integer values. The variable name is suffixed
with the ‘%’ character (e.g. ‘count%’).

Real Holds floating point values (e.g. ‘value’).

String Holds string values. The variable name is suffixed
with the ‘$’ character (e.g. ‘name$’).

Variable identifiers

The following set of rules is applied to variables:

• Variables are named by the user

• They need not be declared before use

• There is no significant limit on the length of variable identifiers

• They cannot be reserved words.

Examples of variables

Name Notes

Signal Voltage A real (i.e. floating point) because it has no ‘%’ or ‘$’
suffix.

ButtonName$ A string (has a ‘$’ suffix).

SignalVolts% An integer (i.e. a 32 bit signed number) because it has
a ‘%’ suffix.

Script operators and expressions Using Script Files

128 Micropak 75XL User Manual

Numeric type conversions

Like BASIC, the script facilities provide automatic type conversion, as and
when appropriate, between Real and Integer values. These types can be
mixed in numeric expressions and built-in functions, such as
‘abs(<numeric expression>)’ or ‘cos(<numeric expression>)’, can be
called with either type or a mixed numeric expression as a parameter.

Script operators and expressions

Here is an informal list of the various operators supported by the script file
processor when evaluating expressions. A formal definition of the full
syntax of the script language is in the Appendix.

Item Purpose

* Multiplication operator

/ Division operator

> Relational greater than operator

>= Relational greater than or equal to operator

< Relational less than operator

<= Relational less than or equal to operator

= Relational equal operator

<> Relational not equal operator

+ Addition operator

- Arithmetic negation operator and subtraction operator

^ Exponentiation operator (raise to the power)

and Logical and operator

eqv Logical equivalence operator

imp Logical implementation operator

not Logical complement operator

or Logical inclusive or operator

xor Logical exclusive or operator

Using Script Files Script operators and expressions

Micropak 75XL User Manual 129

Script operator precedence and associativity

Operator Description Precedence Associativity

^ raise to power 0 left

- unary minus 1 right

* multiplication 2 left

/ division 2 left

+ addition 3 left

- subtraction 3 left

> greater than 4 left

>= greater than or equal 4 left

< less than 4 left

<= less than or equal 4 left

= equal 4 left

<> not equal 4 left

not logical not 5 right

and logical and 6 left

or logical or 7 left

xor logical exclusive or 8 left

imp logical implication 9 left

eqv logical equivalence 10 left

Script file execution and control flow Using Script Files

130 Micropak 75XL User Manual

Example expressions

let A = B + C * D + Param ^ Power : rem real numbers

let A$ = NICK$ + NAME$: rem string concatenation

Note - String Expressions. For string variables, ‘+’ (concatenation) is the
only supported operator.

Script file execution and control flow

Files built from statements

Script files are divided into executable statements.

Events start script execution from labelled entry points

Within a script file labels show entry points at which the script file actions
can commence. In operation, the execution of the commands in the script
file is triggered by ‘events’. These events can be user key strokes, script
file breakpoints, or the passage of simulated real-time in the target system.
When a nominated event occurs, execution of the script file commands is
started at the labelled entry point associated with that event.

Control flow

Execution normally follows sequentially from the first statement to the
next statement in the file, however, control transfers using ‘goto label’ and
‘gosub label’ statements are possible.

Execution always begins at a labelled entry point and continues until an
‘end’ statement is reached. If the Micropak 75XL simulation was
executing code when the originating event occurs, it is suspended whilst
any script file segment is still running.

When all segments have run to completion, the simulator execution is
resumed.

More on script file events

Script files can be driven by events. An event trigger must first be set up
to drive an event. There are five different types of trigger, these being
‘breakpoint’, ‘button’, ‘edit’, ‘pin’ and ‘timeout’. Each event, and how to
set up its trigger, is described in the subsequent pages.

Using Script Files Script file execution and control flow

Micropak 75XL User Manual 131

All event handlers have a similar format. A simple code skeleton would
look something like this:

event:
commands...
end

The label ‘event’ is the label associated with the event trigger. The ‘end’
command goes at the end of any other commands in the event handler.
This indicates that the event has finished.

Breakpoints

These events occur when breakpoint conditions, similar to the ones that
can be defined in the ‘Breakpoints’ dialog box, are met. These
breakpoints are not, however, displayed in the dialog box nor do they stop
execution of the simulator. Instead, they cause a section of the script file
to be run. The simulator can be stopped from here, if necessary, by
executing a ‘stop’ command.

Breakpoint event example

The following piece of code sets up a location breakpoint event trigger at
an address “interrupt” in the module “main.asm”. The location
breakpoint is hit whenever the PC reaches this location (indicated by the
value ‘1’ for the count argument). The script file code at label “event” is
run when this occurs. The integer variable ‘bp1%’ holds the ID for the
breakpoint. This can be used to set enable and dissable the event trigger
and to specify the code to be run when the event occurs.

let bp1% = breakpoint (“PC”,1,“main”, “”,0,“=“,
“interrupt”)

The following code will action the breakpoint event trigger ‘bp1%’:

on event (bp1%) run breaklabel

For more information refer to the descriptions for the ‘on event’ and
‘event’ commands and the ‘breakpoint () function.

Button events

These occur when buttons are pressed and released in test panels.

Script file execution and control flow Using Script Files

132 Micropak 75XL User Manual

Button event example

The following piece of code sets up a button event trigger within a test
panel with ID “start”. Note that a test panel containing such a button need
not exist when the script file is run. This is because the links between the
script file and the button are made at run-time.

let start% = button(“start”)

Identifies the button “start” with the variable start%.

event (start%) on

on event (start%) run startlabel

Edit events

These occur when edit boxes in test panels are modified and then lose
their input focus. Note that if a script file updates an edit box through an
edit command then any modifications will be lost.

Edit event example

The following piece of code sets up an edit box event trigger on an edit
box within a test panel with ID “duration”. Note that a test panel
containing such a button need not exist when the script file is run. This is
because the links between the script file and the button are made at run-
time.

let a$ = edits(“name”)

Returns a string holding the contents of the test panel edit box with
identity “name”.

event (a%) on

on event (a%) run durationlabel

Pin events

These occur when there is a voltage change at a pin.

Using Script Files Script file execution and control flow

Micropak 75XL User Manual 133

Pin event example

The following piece of code sets up a pin event trigger on a pin in the
processor. ‘SCK%’ is an integer variable defining the pin number of the
serial clock (SCK) pin.

let a% = pin(SCK%)

event (a%) on

on event (a%) run event

Timeout events and timeout event example

The following piece of code sets up a timeout event trigger. The event
will occur after “TIME” seconds has elapsed in simulated time. In the
example given, “TIME” is real variable:

let time% = timeout(0.5)

event (time%) on

on event (time%) run timelabel

Identities in script files Using Script Files

134 Micropak 75XL User Manual

Identities in script files

There are numerous script commands and functions that make references
to objects in test panels: the commands and functions include ‘button’,
‘edit’, ‘’, ‘getedit’, ‘setedit’ and setflag.

Objects in test panels are referenced through identities. These are strings
which identify and name test panel objects. In the commands and
functions these are given as simple string expressions.

Links to test panel objects are made at run time. Therefore, when a script
file is executed it is only necessary for the test panel object to exist if a
command to which it is referenced is encountered. If by mistake an object
does not exist then an error message is displayed.

An object in a test panel which can be referenced from a script file has an
identity (ID) associated with it. When an object is created in a test panel it
is given a default identity. This can be re-defined by displaying the
properties dialog box for that object, and modifying the test in the ID edit
box. It is recommended that IDs are customised for each object.

Example

let start% = button(“start”)

Identifies the button “start” with the variable start%.

event (start%) on

on event (start%) run startlabel

These commands add a button event trigger and turn it on. When the test
panel button with identity “start” is pressed (and then released) it will
cause the script code at label “startlabel” to be executed.

event (start%) kill

Deletes the button event trigger from the button in the test panel with
identity “start”. This is effect kills off the event trigger which was added
in the first example.

Using Script Files Identities in script files

Micropak 75XL User Manual 135

setedit “duration”, 4

Sets the contents of the test panel edit box with identity “duration” to ‘4’.
Note that the second argument to the edit command can be an expression
of type integer, real or string.

setflag “pulse”, 1

Sets the test panel flag with identity “pulse” to the highlighted state. The
second argument to the flag command is a numeric expression. The flag
is highlighted when the expression evaluates to any value other than zero.

let a% = edit (“duration”)

Returns the numeric value of the test panel edit box with identity
“duration”. The function returns a real argument. In the example above it
is type converted to an integer.

let a% = edits(“name”)

Returns the numeric value of the test panel edit box with identity
“name”.

event (a%) on

on event (a%) run durationlabel

Adds an edit box trigger. When the test panel edit box with identity
“duration” is modified and the input focus lost, the code at label
“durationlabel” will be executed. Note that if a script file updates the edit
box through the edit command then any modifications will be lost.

event (a%) off

turns off the edit box event trigger but does not remove it from the edit
box.

Script keywords Using Script Files

136 Micropak 75XL User Manual

Script keywords

These keywords define script statements, qualifiers and built-in script
functions. There are described more fully in the following sections.

For a formal definition of the full syntax of the script language, see the
script file formal syntax description given as an Appendix.

Item Purpose

abs Built-in script function - returns the absolute value of a numeric
expression.

acos Built-in script function - returns the arc cosine of a numeric
expression.

asin Built-in script function - returns the arc sine of a numeric
expression.

atan Built-in script function - returns the arc tangent of a numeric
expression.

breakpoint Built-in script function - to specify breakpoints on which script file
event will be triggered.

button Statement qualifier, used with ‘add’ and ‘delete’.
close Close a file stream
connect Script statement - connects/disconnects Thevenin network to pin.
cos Built-in script function - returns the cosine of a numeric expression.
delete Script statement - allows script file event triggers to be deleted.
edit Built in script function - Creates a breakpoint event and returns the

number of the event
else Used with ‘if’.
elseif Used with ‘if’.
end Script statement - specifies the end of an event.
endif Used with ‘if’.
event
event on
event off
event kill

Script statement - provides control for breakpoint trigger events
turns on a breakpoint trigger events
turns off a breakpoint trigger event
delete a breakpoint trigger event

exit exit from the scrip file
exp Built-in script function - returns the value of an exponential function

with ‘e’ as its base.
for Script statement - specifies the start of a for loop in the script file.

Using Script Files Script keywords

Micropak 75XL User Manual 137

Item Purpose

getedit Built-in scrip function - allows data to be returned from, a test panel
edit box. returns a value from a test panel edit box.

getedit$ Built-in script function - returns strings from a test panel edit box.
getfx Built-in script function - returns (gets) the voltage value at a pin.
getfxt Built-in script function - returns (gets) the voltage value at a pin.
getpc Built-in script function - returns (gets) the voltage value at a pin.
gettime Built-in script function - returns (gets) the voltage value at a pin.
getv Built-in script function - returns (gets) the voltage value at a pin.
go Script statement - starts the execution of the target code.
gosub Script statement - performs an event in the script file as a subroutine

and returns here on encountering a return statement or an end
statement.

goto Script statement - transfers script control to the label specified as
the destination.

if Script statement - conditional statement allows the behaviour of the
script file to be adapted automatically to actions and states that
occur in the target system.

input Script statement for inputting data from a file
let Script statement - assignment.
next Used with ‘for’.
on event
run

Script statement - conditional statement to allow parts of script files
to be run conditionally

open Script statement for opening a file
peek Built-in script function - returns a value from target memory.
poke Script statement - puts a value to target memory.
pin Statement qualifier, used with ‘add’ and ‘delete’.
print Script statement for writing data to a file
rem Script statement - introduces a comment.
repeat Script statement - used with ‘until’ for control loops.
return Script statement - specifies the end of a script file subroutine.
setedit Script statement - allows data to be output to a test panel edit box.
setflag Script statement - allows data to be output to a test panel flag box.
setpc Script statement - sets the target PC to a given value.
setr Script statement - sets the resistance value for the external Thevenin

network of a pin.
setv Script statement - sets the voltage generator value for the external

Thevenin network of a pin.
sin Built-in script function - returns the sine of a numeric expression.
sgn Built-in script function - returns the sign of a numeric expression.

Script keywords Using Script Files

138 Micropak 75XL User Manual

Item Purpose

sqr Built-in script function - returns the square root of a numeric
expression.

step Used with ‘for’ statement to define the loop increment.
stop Script statement - stops the execution of the target code.
tan Built-in script function - returns the tangent of a numeric

expression.
then Used in ‘if’ statements.
timeout Script statement - specifies a timeout which will be monitored to

trigger events when the timeout expires. This facility allows testing
of time dependent routines in the target code.

until Used with ‘repeat’

Note that some script operators are also reserved words (e.g. and, xor, etc).

Using Script Files Script file commands and functions

Micropak 75XL User Manual 139

Script file commands and functions

This section describes the various script file commands and functions in
detail. They are given in alphabetical order.

ABS

Script file function. Returns the absolute value of a numeric expression.

Format

abs (<value>)

value input parameter (numeric expression)

Example

let a = abs(-1.6) ‘would return 1.6

ACOS

Script file function. Returns the arc cosine (in radians) of a numeric
expression.

Format

acos (<value>)

value input parameter (numeric expression)

Example

let a = acos(1) ‘would return 0

AND Using Script Files

140 Micropak 75XL User Manual

AND

Logical and operator. The and operator performs a bitwise operation on
two integer operands.

The truth table for the operator is:

X Y X and Y

1 1 1

1 0 0

0 1 0

0 0 0

Example

let a% = b% and c%

ASIN

Script file function. Returns the arc sine (in radians) of a numeric
expression.

Format

asin (<value>)

value input parameter (numeric expression)

Example

let a = asin(1) ‘would return pi/2

Using Script Files ATAN

Micropak 75XL User Manual 141

ATAN

Script file function. Returns the arc tangent (in radians) of a numeric
expression.

Format

atan (<value>)

value input parameter (numeric expression)

Example

let a = atan(1) ‘would return pi/4

BREAKPOINT

This is a function which allows the details of breakpoints to be set in script
files.

Breakpoints set in this way act as event triggers. The specification of
breakpoints in this function allow a similar range of options to those
provided by the user breakpoint facility in the simulator (which is accessed
via the ‘Breakpoints’ dialog box).

When the breakpoint is reached the event handler defined within the call
to the breakpoint function will be triggered.

The value returned by the function is an number which identifies the
breakpoint for subsequent deletions, and should be stored and used for this
purpose. If the breakpoint could not be set a value of -1 will be returned.

Format1

breakpoint (<type>,<counter>,<module>,<variable-
type>,<location>,<variable-length>,<relation>,<break value>)

BREAKPOINT Using Script Files

142 Micropak 75XL User Manual

Format2

breakpoint (<type>,<counter>,<module>,<variable-symbol>,<variable-
length>,<relation>,<break value>)

Parameter Meaning

type breakpoint-type

“PC” Memory location type

“RAMR” RAM location read

“RAMW” RAM location write

“RAMRW” RAM location read/write

“RAMMOD” RAM location modified.

Counter an integer expression or value specifying the number of
times the break condition should be reached before an
event is triggered.

Module the name of the module in which the location of the
breakpoint control variable is located.

Variable type

(format 1 only)

the type of the breakpoint location to be evaluated. Two
sets of values are possible depending on the breakpoint
type. These are described below:

“BIT” for ‘RAM’ types only

“DATA” for ‘RAM’ types only

location
(format 1 only)

the address of the breakpoint location

variable symbol
(format 2 only)

the symbolic name of the breakpoint location

variable length the length of the variable in nibbles - values 1 to 8
(ignored for PC breakpoints)

Using Script Files BREAKPOINT

Micropak 75XL User Manual 143

Parameter Meaning

relation the relation to be used in evaluating the breakpoint
condition. The following values can be used:

“<” breakpoint location less than value

“<=“ breakpoint location less/equal to value

“>“ breakpoint location greater than value

“>=“ breakpoint location greater than/equal to value

“=“ breakpoint location equal than value

“<>“ breakpoint location not equal than value

break value the value against which the breakpoint location is to be
checked.

Examples

This first example sets a script file breakpoint to invoke the script event
handler. The condition to trigger the event will be a location (PC)
condition occurring (1) times, when the PC (=) the label
(END_OF_TEST) in the module (“coreb.asm”). Note that the location
field here is a dummy - given as (0). The breakpoint identifying number
is stored in bp1% for use later when the breakpoint needs to be triggered,
set on, off or deleted (see the EVENT statement).

let bp1% = breakpoint
(”PC”,1,”coreb”,””,0,”=“,”END_OF_TEST”)

This second example sets a script file breakpoint to invoke the script event
handler at the label (portbrk). The condition to trigger the event is a RAM
write condition (RAMW) which needs to occur (1) times when the RAM
variable address at the symbol (MYVAR) defined in the module
(stepper.asm) is written to any value greater than or equal to (=) 0.

let bp2% = breakpoint (”RAMW”,1,”stepper”,”MYVAR”,”=“,0)

Again, the breakpoint identifying number is stored, this time in bp2%, for
use later when the event needs to be triggered.

CLOSE Using Script Files

144 Micropak 75XL User Manual

CLOSE

Close a file.

Format

close <file number>

file number a valid file number (numeric expression) as obtained from
the open statement.

Example

close #1

CONNECT

Connects/disconnects Thevenin network to a pin.

Format

connect <pin number>, <connect,disconnect>

pin number a valid pin number (numeric expression)

connect/disconnect value 1 or 0 to show connected or disconnected (numeric
expression)

Example

connect startpin%,1

Using Script Files COS

Micropak 75XL User Manual 145

COS

Script file function. Returns the cosine of a numeric expression (in
radians).

Format

cos (<value>)

value input parameter (numeric expression)

Example

let a = cos(2 * 3.1415926/6) would return (approximately) 0.5

EDIT

Specifies that a breakpoint trigger event is to be set on a test panel edit
box. This is a function which returns an event trigger number.

Format

edit <“identity”>

identity name of a test panel edit box

data data to be output. Data may be integer or string values (numeric
expression) or (string expression)

Example

let flagvar% = edit(“DISP”)

on event (flagvar%) run toggle

END Using Script Files

146 Micropak 75XL User Manual

END

Specifies the end of an event. Control will flow through events in the
script file until this command is reached.

Example

end

EQV

Logical equivalence operator. This operator performs a bitwise operation
on two integer operands. The truth table for the operator is:

X Y X eqv Y
1 1 1

1 0 0

0 1 0

0 0 1

Example

let a% = b% eqv c%

Using Script Files EVENT

Micropak 75XL User Manual 147

EVENT

Allows event triggers to be turned on or off or deleted.

Event trigger actions are specified by setting the value from an event
function to a script file variable. The script file variable is then used to
specify the event. The possible event functions are Breakpoint, Button,
Edit, Pin and Timout. You should refer to the relevant section of this
manual for details of the functions.

The action routine to be run when the event occurs is specified by the ON
EVENT statement.

Both the button and edit formats below refer to objects in test panels. A
button event is triggered when a test panel button is pressed and then
released. An edit event is triggered when an edit box in a test panel is
modified, and the edit box then loses the input focus. Note that if a script
file updates the edit box then any modifications will be lost. The pin
format refers to the pin on the processor. A pin event is triggered
whenever there is a voltage change at the pin in question.

Format

event (<identity>) <status>

identity the identity of the event a script file variable

status on - turn the event on

off - turn the event off

kill - remove the event

Examples

let timer% = timeout(0.5)

on event (timer%) run toggle

event (timer%) on

let press% = button (“start”)

on event (press%) run toggle

event (press%) on

EXP Using Script Files

148 Micropak 75XL User Manual

EXP

Script file function. Returns the value of an exponential function with ‘e’
as its base.

Format

exp (<value>)

value input parameter (numeric expression)

Example

let a = exp(2) ‘would return ‘e’ raised to the power 2

FOR - TO - [STEP]

Specifies the start of a for loop in the script file. This allows commands in
a script file to be repeated a specified number of times.

Format

for <control> = <start> to <end> [step <increment>]

control an internal variable which will be incremented each time around the
loop

start the starting value to be set (numeric expression)

end an ending value against which the contents of the control variable
will be checked. When the control variable value matches the end
value, the for loop will be terminated (numeric expression)

increment an optional step increment to be added to the control variable
(numeric expression)

Example

for count% = 0 to 10

for count% = start% to end% step 2

Using Script Files GETEDIT($)

Micropak 75XL User Manual 149

GETEDIT($)

Script file function. Allows data and strings to be returned from a test
panel edit box.

Format

getedit (<identity>)

getedit$ (<identity>)

identity input parameter (string expression)

Example

let a$ = edits(“string”)

GETFX

Read the frequency of the main system clock.

This statement may not be used on its own but must be used as an
expression within other statements.

Format

getfx()

Example

let clock = getfx()

GETFXT Using Script Files

150 Micropak 75XL User Manual

GETFXT

Read the frequency of the sub-system clock. This statement may not be
used on its own but must be used as an expression within other statements.

Format

getfxt()

Example

let subclock = getfxt()

GETPC

Read the current value of the program counter. This statement may not be
used on its own but must be used as an expression within other statements.

Format

getpc()

Example

let pc = getpc()

GETTIME

Obtain the currently held simulation time. This time is expressed in
seconds.

This statement may not be used on its own but must be used as an
expression within other statements.

Format

gettime()

Example

let simtime = gettime()

Using Script Files GETV

Micropak 75XL User Manual 151

GETV

Read the voltage on a pin. The voltage read is expressed in volts.

This statement may not be used on its own but must be used as an
expression within other statements.

Format

getv(<pin number>)

pin number a valid pin number (numeric expression)

Example

setv startpin%, getv(Gnd%)

let VOLTS = getv(9)

GO

Starts the execution of the target code. There are no parameters.

Example

go

GOSUB

Perform an event in the script file as a subroutine and return here on
encountering a return statement or an end statement.

Format

gosub <label>

label the label of the event to be performed

Example

gosub show

GOTO Using Script Files

152 Micropak 75XL User Manual

GOTO

Transfers control to the label specified.

Format

goto <label>

label the label of the destination

Example

goto show

IF - THEN - [ELSEIF] - [ELSE] - ENDIF

A conditional statement which assesses the value of an expression and
performs a set of statements if the condition is found to be true.

Optionally, a different block of statements may be performed if the
expression is not found to be true. Statement blocks are terminated by the
ELSEIF, ELSE or the ENDIF, whichever is appropriate.

Format

if <expression> then <statement block> [elseif <statement block>] [else
<statement block>] endif

expression which can be evaluated to true or false (numeric expression)

statement
block

one or more statements in a block. The block is terminated by
either ELSEIF, ELSE or ENDIF

Example

if getv(driv1%) < threshold then

setflag “MOTOR1”,0

elseif

setflag “MOTOR1”,1

endif

Using Script Files IMP

Micropak 75XL User Manual 153

IMP

Logical implication operator which performs a bitwise operation on two
integer operands. The truth table is as follows:

X Y X eqv Y
1 1 1

1 0 0

0 1 1

0 0 1

Example

let a% = b% imp c%

INPUT

Obtains a value from a file.

Format

input #<file>,<item>

file number of the file as given on open

item name of a script file variable (string expression)

Example

input #1,driv1%

LET Using Script Files

154 Micropak 75XL User Manual

LET

Assigns a value to an internal script file variable.

Format

let <item> = <value>

item name of a script file variable (string expression)

value input parameter (numeric expression)

Example

let driv1% = 9

NOT

Logical not operator which performs a bitwise operation on an integer
operand.

The truth table for this operator is as follows:

X not X
1 0

0 1

Example

let a% = not a%

Using Script Files OPEN

Micropak 75XL User Manual 155

OPEN

Open a file for capturing data or inputting data.

Format

open <filename>,<FOR mode> <access> <lock> AS #<expression>

filename name of the file to be opened

mode FOR mode type which is one of :-

 APPEND

 INPUT

 OUTPUT

access READ WRITE

WRITE

lock SHARED

LOCK READ WRITE

LOCK WRITE

expression numerical expression between 1 and 255 to identify the file

Example

open “serdata.txt” for input access read as #1

open “test1.txt” for append access write as #2

OR Using Script Files

156 Micropak 75XL User Manual

OR

Logical or operator which performs a bitwise operation on two integer
operands. The truth table is as follows:

X Y X eqv Y
1 1 1

1 0 1

0 1 1

0 0 0

Example

let a% = b% or c%

PEEK

Function which gets a value from target memory.

Format

peek (<memory>)

memory address of memory location (numeric expression)

Example

let count% = peek(“COUNT”)

Using Script Files PRINT

Micropak 75XL User Manual 157

PRINT

Obtains a value from a file.

Format

print #<file>,<item>

file number of the file as given on open

item name of a script file variable (string expression)

Example

print #1,driv1%

POKE

Writes a value to target memory.

Format

poke <memory>,<value>

memory address of memory location (numeric expression)

value value to be output (numeric expression)

Example

poke “COUNT”,4

REM Using Script Files

158 Micropak 75XL User Manual

REM

Comment statement in a script file. This statement can be followed by any
textual information. It may be used on an individual line or on lines
containing a statement:

Example

rem Highlight the flags showing the phases of the stepper

Note on comment delimiters

The rem statement allows the insertion of comments. Because it is a
statement, it must be preceded by a terminator to separate it from any
other preceding statements on the same line.

The apostrophe character ‘ can be used anywhere on a line to introduce a
comment and does not need a preceding terminator.

In both cases the comment is considered to last until the next end of line,
and comments can therefore include ‘:’ characters

Using Script Files SETPC

Micropak 75XL User Manual 159

.

REPEAT - UNTIL

A repeat control loop in which a number of statements are repeatedly
performed until the expression given evaluates to true.

Format

repeat <statement block> until <expression>

statement block one or more statements in a block. The block is terminated
by UNTIL

expression expression which can be evaluated to true or false (numeric
expression)

Example

repeat

let v = getv(driv1%)

until v = threshold

RETURN

Specifies the end of a script file subroutine. This statement takes no
parameters.

Format

return

Example

show:

flag “on”,1

return

SETEDIT Using Script Files

160 Micropak 75XL User Manual

SETEDIT

Allows data to be output to a test panel edit box.

Format

setedit <“identity”>,<data>

identity name of a test panel edit box (string expression)

data data to be output. Data must be 0 or 1 (numeric expression)

Example

setedit “DISPLAY”,0

SETFLAG

Allows data to be output to a test panel flag box.

Format

flag <“identity”>,<data>

identity name of a test panel flag box (string expression)

data data to be output. Data must be 0 or 1 (numeric expression)

Example

setflag “STOPACT”,0

Using Script Files SETPC

Micropak 75XL User Manual 161

SETPC

Sets up the value in the program counter of the target processor.

This command may be used to set up the PC just prior to performing test
execution of the target code.

Format

setpc <rom address>

rom address valid rom address for the processor (numeric expression)

Example

setpc 100

SETR

Sets up the value of the external resistance on a pin.

Format

setr <pin number>, <value>

pin number a valid pin number (numeric expression)

value resistance value to be set, expressed in ohms (numeric expression)

Example

setr startpin%,10000

setr 9,10000

SETV Using Script Files

162 Micropak 75XL User Manual

SETV

Sets up the value of the external voltage on a pin.

Format

setv <pin number>,<value>

pin number a valid pin number (numeric expression)

value voltage value, expressed in volts (numeric expression)

Example

setv startpin%, getv (Gnd%)

setv 9,5

SIN

Script file function. Returns the sine of a numeric expression (in radians).

Format

sin(<value>)

value input parameter (numeric expression)

Example

let a = sin(3.1415926/6) ‘would return (approximately) 0.5

SGN

Script file function. Returns the sign of a numeric expression.

If the expression is negative then -1 is returned. If the expression is
positive then 1 is returned and if it is equal to zero then 0 is returned.

Using Script Files SQR

Micropak 75LX User Manual 163

Format

sgn(<value>)

value input parameter (numeric expression)

Example

let a = sgn(-10) ‘would return -1

SQR

Script file function. Returns the square root of a numeric expression. The
expression must be positive.

Format

sqr(<value>)

value input parameter (numeric expression)

Example

let a = sqr(13) ‘would return 3.605...

STOP

Stops the target code execution. There are no parameters.

Example

stop

TAN Using Script Files

164 Micropak 75XL User Manual

TAN

Script file function. Returns the tangent of a numeric expression (in
radians).

Format

tan(<value>)

value input parameter (numeric expression)

Example

let a = tan(3.1415926/4) ‘would return (approximately) 0.01371

TIMEOUT

Specifies a time-out value which will be monitored to trigger events when
the time-out expires. This facility allows the testing of time-dependent
routines in the target code.

Format

timeout (<value>)

value value of the time-out in seconds (numeric expression)

Example

let time% = timeout (0.010)

Using Script Files XOR

Micropak 75XL User Manual 165

XOR

Logical exclusive-or operator which performs a bitwise operation on two
integer operands. The truth table is as follows:

X Y X eqv Y
1 1 0

1 0 1

0 1 1

0 0 0

Example

let a% = b% xor c%

XOR Using Script Files

166 Micropak 75XL User Manual

Keyboard Summary Accelerator keys

Micropak 75XL User Manual 167

Keyboard Summary

Editing keys

A complete list of the keys available for the editing function is given in the
chapter ‘Using the Editor’.

Accelerator keys

Here is a summary of the ‘accelerator’ keys used to provide fast access to
commonly used menu options:

File menu

Key Function

Ctrl-N New file

Ctrl-O Open file

Ctrl-S Save file

Edit menu

Key Function

Ctrl-Z Undo

Ctrl-A Redo

Ctrl-X Cut

Ctrl-C Copy

Ctrl-V Paste

Ctrl-F Find

Ctrl-R Replace

Accelerator keys Keyboard Summary

168 Micropak 75XL User Manual

Project menu

Key Function

Ctrl-F3 Assemble file

Shift-F3 Link

Alt-F3 Rebuild all

View menu

Key Function

F4 Next error

Shift-F4 Previous error

Ctrl-F2 Toggle bookmark

F2 Next bookmark

Shift-F2 Previous bookmark

Test menu

Key Function

Ctrl-P Run script

Ctrl-Q Stop script

Debug menu

Key Function

F5 Go

F6 Step into

F7 Step over

F8 Step out

F9 Step to cursor

Alt-F5 Stop debugging

Ctrl-F9 Set PC to cursor

Ctrl-B Breakpoints

Ctrl-U QuickWatch

Keyboard Summary Accelerator keys

Micropak 75XL User Manual 169

Trace menu

Key Function

Shift-F5 Go (roll) back

Shift-F6 Step back into

Shift-F7 Step back over

Shift-F8 Step back out

Shift-F9 Step back to cursor

Ctrl-I Signals zoom in

Ctrl-J Signals zoom out

Ctrl-T Snap signals

Window menu

Key Function

Ctrl-D Open device window

Ctrl-E Open pin window

Breakpoint function

Key Function

F10 Set breakpoint

Accelerator keys Keyboard Summary

170 Micropak 75XL User Manual

Appendix A - Script file grammar Definition

Micropak 75XL User Manual 171

Appendix A - Script file
grammar

Definition

This appendix shows the complete grammar of the script file language. It
encompasses a complete definition of the language of the script processor.

It is shown in modified Backus-Naur form.

file - statement-list EOF

script file: [statement-list]

statement-list: statement-list labelled statement
labelled statement

labelled-statement: [label][statement] terminator

statement: close-statement
connect-statement
delete-statement
else-statement
else-if statement
end-statement
for-next-statement
go-statement
gosub-statement
goto-statement
if-endif-statement
let-statement
poke-statement
print-statement
repeat-until-statement
return-statement
setpc-statement
setr-statement
setv-statement
stop-statement

terminator: \n
:

Definition Appendix A - Script file grammar

172 Micropak 75XL User Manual

close-statement: close close-list

close-list: #expression

connect-statement: connect expression , expression

end-statement: end

event-statement event event-number mode

for-next-statement: for-statement [statement-list] next-statement

for-statement: for identifier = expression to expression [step-expression]
terminator

step-expression: step expression

next-statement: next identifier

go-statement: go

gosub-statement: gosub label

goto-statement: goto label

if-endif-statement: if-statement [elseif-statement][else-statement] endif-
statement

if-statement: if expression then terminator [statement-list]

elseif-statement: elseif-statement elseif expression then terminator
[statement-list]
elseif expression then terminator [statement-list]

else-statement: else terminator [statement-list]

endif-statement: endif

let-statement: let identifier = expression

on-statement on event run label

open-statement open expression mode access lock AS #expression

poke-statement: poke expression , expression

print-statement: expression

repeat-until-
statement:

repeat terminator [statement-list] until expression

return-statement: return

setedit setedit expression

setflag setflag expression

setpc-statement: setpc expression

Appendix A - Script file grammar Definition

Micropak 75XL User Manual 173

setr-statement: setr expression , expression

setv-statement: setv expression , expression

expression: eqv-expression

eqv-expression: eqv-expression eqv imp-expression
imp-expression

imp-expression: imp-expression imp xor-expression
or-expression

xor-expression: xor-expression xor or-expression
or-expression

or-expression: or-expression or and-expression
and

and-expression: and-expression and not-expression
not

not-expression: not not-expression

relational-
expression:

relational-expression = additive expression
relational-expression <> additive expression
relational-expression > additive expression
relational-expression < additive expression
relational-expression >= additive expression
relational-expression <= additive expression
additive-expression

additive-
expression:

additive-expression + multiplicative-expression
additive-expression - multiplicative-expression
multiplicative-expression

multiplicative-
expression:

multiplicative-expression * uminus-expression
multiplicative-expression / uminus-expression
unimus-expression

unimus-expression: - unimus-expression
power-expression

power-expression: power-expression ^ unary-expression
unary-expression

Definition Appendix A - Script file grammar

174 Micropak 75XL User Manual

unary-expression: identifier
real-constant
integer-constant
string-constant
abs (expression)
acos (expression)
asin (expression)
atan (expression)
breakpoint (label , expression, expression , expression ,
expression , expression , expression)
breakpoint (label , expression, expression , expression ,
expression , expression , expression , expression)
button (expression)
cos (expression)
edit (expression)
exp (expression)
flag (expression)
getedit (expression)
getfx ()
getfxt ()
getpc()
gettime ()
getv (expression)
input # expression
peek (expression)
pin (expression)
sin (expression)
sgn (expression)
tan (expression)
timeout(expression)

Appendix B - Script File Example

Micropak 75XL User Manual 175

Appendix B - Script File
Example

rem **

rem File : stepper.scr

rem Desc :

rem File for demonstration of the MP75X simulator

rem***
rem***

rem Allocate vars to pin numbers. By allocating variables with

rem pin numbers, makes the script file easier to understand.

rem***

 let driv1% = 46 : rem the stepper motor drive

 let driv2% = 47 : rem lines

 let driv3% = 48 :

 let driv4% = 49 :

 let Vdd% = 54 : rem the power supply lines

 let Gnd% = 33 :

 let startpin% = 42 : rem the lines which the real

 let stoppin% = 43 : rem switches are connected to

rem***

rem Set voltages on pins and make connections

rem***

 setv startpin%, getv (Vdd%) : rem both switches made inactive

 setv stoppin%, getv (Vdd%) : rem (high)

Appendix B - Script File Example

176 Micropak 75XL User Manual

 setr startpin%,10000 : rem resistance = 10K

 setr stoppin%,10000 :

 connect startpin%,1 : rem allow the script file to

 connect stoppin%,1 : rem change the lines

rem***

rem Assign button IDs to run pieces of script files. So if a

rem button is pressed in a test panel the relevent script

rem commands are processed.

rem STARTBUTTON and STOPBUTTON are the ids given to the panel

rem button. actstart and actstop are the labels for the script

rem file functions.

rem***

 start% = button("STARTBUTTON")

 on event (start%) run actstart

 stop% = button("STOPBUTTON")

 on event (stop%) run actstop

 event (start%) on

 event (stop%) on

rem***

rem Any changes to voltage on the motor drive lines will call

rem the appropriate script routine.

rem***

 d1% = pin(driv1%)

 on event (d1%) run show1 : rem pin 46

Appendix B - Script File Example

Micropak 75XL User Manual 177

 d2% = pin(driv2%)

 on event (d2%) run show2 : rem pin 47

 d3% = pin(driv3%)

 on event (d3%) run show3 : rem pin 48

 d4% = pin(driv4%)

 on event (d4%) run show4 : rem pin 49

 event (d1%) on

 event (d2%) on

 event (d3%) on

 event (d4%) on

rem***

rem If the user changes the power supply change the switching

rem threshold.

rem**

 V% = pin(Vdd%)

 on event (V%) run adjthes

 G% = pin(Gnd%)

 on event (G%) run adjthes

 event (V%) on

 event (G%) on

rem***

rem The following section of script code is to produce a

rem breakpoint which has to be hit 5 times before it stops

rem execution and warns the user in the dialog box of the test

rem panel

Appendix B - Script File Example

178 Micropak 75XL User Manual

rem***

 let bpcount% = 5 : rem set up initial count

 b1% = breakpoint("LOC",1,"stepper","PC",0,"=","SetPhase7")

 on event (b1%) run pc_brk

 event (b1%) on : rem set up the bp, which when

: rem the program counter is

: rem about to hit SetPhase7,

: rem the script code at pc_brk

: rem is called

 let threshold = (getv(Vdd%) + getv(Gnd%)) / 2

 go :rem start execution of the program

 end

rem***

rem The following script routine is called when the program

rem hits the set_phase_7 breakpoint.

rem***

pc_brk:

 let bpcount% = bpcount% - 1 : rem decrement bp count

 if (bpcount% = 0) then : rem check the count

 stop : rem if 0 stop execution of

: rem instructions, initialise

 let bpcount% = 5 : rem count back to 5

: rem report to the user that the bp has been hit

 setedit "DIALOG", "Breakpoint hit"

 endif

Appendix B - Script File Example

Micropak 75XL User Manual 179

 end : rem end of this routine

rem***

rem The following script routine is called when the threshold

rem needs to be changed

rem***

adjthes:

 let threshold = (getv(Vdd%) + getv(Gnd%)) / 2

 end

rem***

rem Highlight the flags showing the phases of the stepper

rem motor.

rem MOTOR1, MOTOR2, MOTOR3 and MOTOR4 are flag ids

rem in the panel. A value of 1, highlights the flag, a 0 will

rem turn the highlighting of the flag (segment) off.

rem***

show1:

 setedit "DIALOG","phase 1"

 if getv(driv1%) < threshold then

 setflag "MOTOR1",0

 else

 setflag "MOTOR1",1

 endif

 end

 show2:

 setedit "DIALOG","phase 2"

Appendix B - Script File Example

180 Micropak 75XL User Manual

 if getv(driv2%) < threshold then

 setflag "MOTOR2",0

 else

 setflag "MOTOR2",1

 endif

 end

 show3:

 setedit "DIALOG","phase 3"

 if getv(driv3%) < threshold then

 setflag "MOTOR3",0

 else

 setflag "MOTOR3",1

 endif

 end

show4:

 setedit "DIALOG","show4"

 if getv(driv4%) < threshold then

 setflag "MOTOR4",0

 else

 setflag "MOTOR4",1

 endif

 end

rem***

rem Script code called when the Start button is pressed.

rem Checks that the I/O line is inactive (HIGH).

Appendix B - Script File Example

Micropak 75XL User Manual 181

rem If inactive makes the line active. Shows the new status.

rem After 0.010 seconds (10ms) runs script code to deactivate

rem I/O line

rem***

actstart:

 if getv(startpin%) > threshold then

 setv startpin%, getv (Gnd%)

 setflag "STARTACT",1

 t2% = timeout (0.010)

 on event (t2%) run inactstart

 event (t2%) on

 endif

 end

rem***

rem Code to deactivate I/O line and show the new status.

rem***

inactstart:

 setv startpin%, getv (Vdd%)

 setflag "STARTACT",0

 end

rem***

rem Script code called when the Stop button is pressed.

rem***

actstop:

 if getv(stoppin%) > threshold then

Appendix B - Script File Example

182 Micropak 75XL User Manual

 setv stoppin%, getv (Gnd%)

 setflag "STOPACT",1

 t1% = timeout (0.010)

 on event (t1%) run inactstop

 event (t1%) on

 endif

 end

inactstop:

 setv stoppin%, getv (Vdd%)

 setflag "STOPACT",0

 end

rem***

rem End of script file

rem***

Index

Micropak 75XL User Manual 183

Index

—A—
accelerator keys, 53, 65, 161

bookmarks, 73
breakpoints, 163
Debug menu, 162
Edit menu, 161
File menu, 161
Test menu, 162
Trace menu, 162
View menu, 162
Window menu, 163

—B—
batch file, 57, 58
bookmarks

clear, 73
next, 73
previous, 73
set, 73

breakpoint, 36, 37
Breakpoints, xv, 10, 11, 36, 40, 49,

58, 75, 81, 85, 162
accelerator key, 163
break at location, 86
break at location if expression is

true, 86
disabling, 90
enabling, 90
removing, 90
script file facilities, 91
setting, 90

type field, 86

—C—
check boxes, 53
controlling execution, 75
customised memory views, 100

—D—
Debug

breakpoints, 85
fast mode, 33, 76, 79
options, 76, 79, 82
reset, 78
slow mode, 33, 76, 77, 79

debug information file, 58
Debug menu, 31, 46, 49, 78, 85,

162
go, 32, 37

debug mode, 33
dialog boxes, 51
directory structure, 6

—E—
Edit menu, 46, 47, 161
editing a project, 60
editor

keyboard functions, 70
locating and changing text, 71
options, 68

enabling signal buffer, 103
execution

184 Micropak 75XL User Manual

ceasing, 75
controlling, 75
go, 76
optimising speed, 75
restarting, 83
step into, 76
step out, 76
step over, 76
step to cursor, 76

external project options
build mode, 63
debug build, 63
processor, 63
release build, 63
target name, 63

external projects, 57

—F—
file defaults, 66
File menu, 46, 47, 108, 161

open, 65

—H—
Help, 55
Help menu, 46, 51, 55

—I—
inactive trace buffer, 83
installation, 5
internal project options, 61

Assembler, 62
build, 62
C compiler, 62
category, 62
C-Like compiler, 62
Linker, 62
options string, 62

internal projects, 57
interval, 79
interval window, 79

—K—
keyboard summary, 161

—L—
list boxes, 53
locals, 112
locating and changing text

find, 71
locating and finding text

bookmarks, 73
find/replace again, 73
replace, 72

—M—
menu operation, 45

—O—
on-chip peripherals, 105
opening a project, 59
opening files, 65
Options

Debug, 76
Options menu, 46, 50

debug, 76, 79, 81, 82
editor, 68

—P—
pin and port windows, 93
pin numbering, 96
plot lines

disabling, 103
enabling, 103

Index

Micropak 75XL User Manual 185

removing, 103
port

script files, 95, 96
views, 93, 106
windows, 93

port simulation techniques, 93
processor information file, 58
program counter, 77, 78

indicator, 31
project, 34

batch file, 57, 58
debug information file, 58
edit, 60
external, 61, 63
internal, 61
open, 59
processor information file, 58
source files, 58
window configuration file, 58

project files, 57
external, 57
internal, 57

Project menu, 46, 48, 74
execute, 35

pull-up control, 96

—Q—
quick watch, 111

add to watch, 112
modify variable, 112
zoom, 112

—R—
radio buttons, 53
RAM

customised memory views, 100
window, 99

re-building the project, 74
registers, 116
roll-back displays, 82

go back, 82
step back into, 82
step back over, 82
step back to cursor, 82
step out, 82

run time links, 6, 7

—S—
script file, 22, 107

commands, 80
events, 124
execution and control flow, 124

script file variables, 121
script files, 23, 35

breakpoints, 91
examples of uses, 118
identities, 128
port, 95, 96
purpose and uses, 117
test panels, 117

script language
breakpoints, 125
button events, 125
comment delimiters, 120
edit events, 126
elements of statements, 120
grammar and syntax, 119
keywords, 130
operator precedence and

associativity, 123
operators and expressions, 122
pin events, 126
statements and lines, 119
timeout events, 127

186 Micropak 75XL User Manual

script language commands and
functions
ABS, 133
ACOS, 133
ADD, 141
AND, 134
ASIN, 134
ATAN, 135
BREAKPOINT, 135
CONNECT, 138
COS, 138
EDIT, 139
EDITS, 139
END, 142
EQV, 142
EXP, 142
FLAG, 154
FLAG-TO-[STEP], 154
GOSUB, 145
GOTO, 145
IF-THEN-[ELSEIF]-[ELSE]-

ENDIF, 145
IMP, 147
LET, 148
NOT, 148
OR, 150
PEEK, 150
POKE, 151
PUT, 151
REM, 151
REPEAT-UNTIL, 153
RETURN, 153
SETPC, 155
SETR, 155
SETV, 156
SGN, 156
SIN, 156
SQR, 157

STOP, 157
SYMBOL, 157
TAN, 158
TIMEOUT, 158
XOR, 159

setup, 5, 7
signal, 24

buffer, 103
recording box, 101
zoom in, 104
zoom out, 104

signal buffer
control, 80

signal plots, 24
signal recording box

axes and scales, 102
disabling plot lines, 103
enabling buffer, 103
enabling plot lines, 103
markers and shading, 102
pin selection, 103
removing plot lines, 103
setting up, 101
viewing the results, 104

Signal window
control, 80

source debugging, 111
call stack, 111
locals, 111
quick watch, 111
registers, 111
watch, 111

source files, 58
step

multi, 32, 75
single, 32, 75, 82

Step Into, 32, 76, 77
Step Out, 77

Index

Micropak 75XL User Manual 187

Step Over, 76, 77
Step to Cursor, 31, 76, 77
syntax colouring, 67

—T—
Test menu, 46, 49, 50, 108, 162
test panel, 21, 107

button, 109
edit box, 110
flag, 109
move, 109
options, 108
properties, 110
setting up, 108
text box, 109

test panels
examples of uses, 118

trace buffer
control, 80
inactive, 83

trace buffering, 37, 81
Trace menu, 24, 46, 162

roll-back displays, 82

—U—
user interface, 41

desktop, 42
icon, 42
keyboard, 53
menu, 42
menu bar, 42
menu operation, 45
scroll bars, 43
status bar, 43
tool bar, 42
toolbar, 54
window, 42

window elements, 43

—V—
View menu, 46, 48, 162
viewing simulated objects, 99

—W—
watch, 112

adding items, 112
window

interval, 79
window configuration file, 58
window elements, 43
Window menu, 24, 46, 51, 79, 163

device, 99, 106
registers, 116

